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Abstract: Background: Currently, and to the best of our knowledge, there is no standardized protocol
to measure the effect of low- to moderate-intensity physical exercise on autonomic modulation
focused in older people. Aim: Validate a test–retest short-term exercise protocol for measuring the
autonomic response through HRV in older people. Methods: A test–retest study design was used.
The participants were selected through intentional non-probabilistic sampling. A total of 105 older
people (male: 21.9%; female: 78.1%) were recruited from a local community. The assessment protocol
evaluated HRV before and immediately after the 2-min step test. It was performed twice on the
same day, considering a time of three chronological hours between the two measurements. Results:
The posterior distribution of estimated responses in the Bayesian framework suggests moderate
to strong evidence favoring a null effect between measurements. In addition, there was moderate
to robust agreement between heart rate variability (HRV) indices and assessments, except for low
frequency and very low frequency, which showed weak agreement. Conclusions: Our results provide
moderate to strong evidence for using HRV to measure cardiac autonomic response to moderate
exercise, suggesting that it is sufficiently reliable to show similar results to those shown in this
test–retest protocol.

Keywords: older adults; physical activity; heart rate; autonomic nervous system

1. Introduction

The autonomic nervous system (ANS) has a role in the modulation of a plethora of
physiological processes, whereas the balance between the sympathetic (SNS) and parasym-
pathetic (PNS) branches of the ANS has the potential to influence the cardiovascular
response to some forms of physical stress, such as those imposed by the environment in
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the form of exercise [1], and those derived from internal physiological processes such as ag-
ing [2]. Although both the PNS and SNS constantly interact to maintain autonomic balance,
current evidence indicates that the SNS continuously influences the electrophysiological
properties of the heart, while the PNS would have a sympathetic-braking effect that could
modulate cardiac activity [3].

Understanding how the ANS communicates with the heart has potential implications
for clinicians searching for new therapeutic strategies, especially those aimed at creating
novel monitoring tools and cost-effective biomarkers for the aging population [2].

The cardiac modulatory effects of ANS can be examined noninvasively through
changes in the time intervals between successive R-R intervals in the heart, also known as
heart rate variability (HRV) [4]. Moreover, there has been a growing interest in evaluating
the HRV response to physical exercise since it reflects a functional autonomic modulation
in relation to the active life of people from health to disease [1,5–13]. Evidence shows
that effort-related cardiovascular reactivity is associated with executive function and phys-
ical fitness [14,15]. Moreover, evidence suggests a sex-dependent response in younger
individuals to physical stress [16].

This is particularly interesting in older people, given that during the aging process,
multiple physiological, cognitive, and social aspects influence cardiovascular parameters
associated with health and functional outcomes in this population [17–19]. Thus, envi-
ronmentally mediated alterations in ANS may derive from pathological states frequently
associated with adverse clinical effects that can be monitored or even predicted in relation
to the possible alterations that the subject can demonstrate in the autonomic register after
constant and individualized monitoring [20,21]. Changes in cardiac autonomic modulation
occur during aging, resulting in reduced vagal tone and increased sympathetic activity
predominance [22].

In a recent study, a group of frail and non-frail older people was compared, assessing
the HRV response to a 160-m walking test, showing that frail older people exhibit an
impaired response compared to non-frail individuals [23]. Although similar evidence exists
in this regard [24–26], it is already known that the differences in the autonomic modulation
of individuals can be influenced by the type, duration, and intensity at which the exercise
is performed [27].

To the best of our knowledge, no standardized protocols measure the effect of low-
to moderate-intensity physical exercise on autonomic modulation focused in older adults.
For this reason, this study aims to validate a test–retest short-term exercise protocol for
measuring the autonomic response through HRV in older people. We hypothesized that
validating a test–retest short-term exercise protocol would yield good reproducibility of
cardiac autonomic activity in older adults.

2. Materials and Methods
2.1. Study Design

A test–retest study design was used. The study aims and assessment procedures
were explained to all the subjects. The participants were selected through intentional
non-probabilistic sampling, distributed between females and males. The participants were
monitored for two consecutive moments on the same day. The first measurement was
obtained in the morning between 09:00 and 10:00 h and the second measurement, three
hours after the previous measurement was completed. During the three hours of rest, the
participants completed surveys (quality of life and personal history) and rested mentally
and physically within the same evaluation building. It is also important to note that the
testing area was at an average room temperature of 21 ◦C and had comfortable chairs for
each of the participants to rest.

2.2. Participants

Participants were recruited from a local community. Subjects were included if (i) they
were aged 60 years or older; (ii) were permanently residing in the Magallanes and Chilean
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Antarctic region; (iii) had a percentage greater than 60% on the Karnofsky Performance
Status Scale, which allowed us to work with older people who had a state of autonomy
necessary to carry out the study tests; (iv) absence of the following diagnosis: diabetic
neuropathy; use of pacemakers; clinical depression; cognitive or motor disability; and
dementia. The exclusion criteria were: (i) consumption of beta-blockers during the study,
(ii) taking drugs or stimulant substances within 12 h before the cardiac assessment; and
(iii) having some degree of motor disability that prevented participants from moving
around. No participants met the exclusion criteria. The volunteers were informed about the
study’s aims, procedures, responsibilities, and risks. All participating subjects gave their
permission and provided informed consent before participation. The Ethics Committee
of the University of Chile (ACTA N◦029-18/05/2022) and the Ethics Committee of the
University of Magallanes (N◦008/SH/2022) approved this study following the regulations
established by the Declaration of Helsinki on ethical principles in human beings.

2.3. Procedures

The measured protocol consisted of the evaluation of HRV before and immediately
after the 2-min step test, which is a part of the Senior Fitness Test protocol [28]. It consisted
of a functional cardiorespiratory test, where each subject marched on the site as many times
as possible for 2 min. The protocol was performed twice on the same day, considering
a time of three chronological hours between the two measurements. This time has been
deemed sufficient for cardiovascular recovery for the level of intensity of the exercise
performed [27,29]. During the waiting time between each execution period, the participants
rested and performed daily activities such as walking, going to the bathroom, and resting
comfortably in chairs, to recover their basal states before the execution of the next protocol.
Throughout the assessment, the participants were monitored using cardiovascular measures
(i.e., heart rate and blood pressure) to monitor the absence of adverse events while applying
the exercise protocol. The evaluation protocol was estimated to last approximately 20 min
for each subject assessed at each time. None of the participants expressed discomfort
during the evaluation.

2.4. Assessments
2.4.1. Morphological Measures

Body mass (kg) and total body fat (%) were assessed by bioimpedance using the Tanita
BC-558 Ironman Segmental Body Composition Monitor (Tanita Ironman, Arlington Heights,
IL 60005, USA), with a concordance of 89.3% compared to the Dual X-ray Absorption test
using standard measurement protocols [30,31]. Height was measured by a CHARDER®

HM230M manual height rod (Charder Electronics Co., Ltd., No. 103, Guozhong Rd.,
Taichung City, Taiwan).

2.4.2. Cardiovascular Parameters

Systolic blood pressure (SP) and diastolic blood pressure (DP) were measured (Omron®

Pressure Monitor). As part of the protocol, we ensured that the participant had an SP less
than 140 mmHg and a DP less than 90 mmHg to start the HRV measurements. Cardiac
autonomic modulation was determined via a recording of RR intervals obtained by the
Polar Team2 system (Polar®) application. The volunteers remained seated in a chair during
the entire HRV measurement procedure, and RR intervals were recorded continuously
during the last 10 min of rest, and were subsequently analyzed for 5 min. The subject’s
breathing rate was spontaneous. Artifacts and ectopic heartbeats (which did not exceed
3% of the recorded data) were excluded [32]. The time-domain parameters considered for
the analysis were the square root of the mean squared differences of the successive RR
intervals (RMSSD, expressed in ms) as an index of parasympathetic activity [33] and the
standard deviation of the RR intervals (SDNN), which reflects the total variability, that is,
the sympathetic and parasympathetic contribution of the ANS on the heart [34,35]. In the
frequency domains, the high-frequency (HF) power band was considered, given that it
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reflects the parasympathetic influences on heart rate (HR) and includes respiratory sinus
arrhythmia [36], as well as the low-frequency (LF) band, given that it is associated with
baroreflex activity [37]. Moreover, the very-low-frequency band (VLF) was considered, due
to its strong association with emotional stress [19,38].

Additionally, the Stress Index (SI) and Parasympathetic and Sympathetic Nervous
System Index (PNS and SNS, respectively) were calculated. The PNS Index, reflecting
total vagal stimulation, was calculated from the mean R-R intervals, RMSSD, and Poincaré
Plot Index SD1 in normalized units (linked to RMSSD) and reflects how many standard
deviations above or below the normal population averages the obtained values were.
The SNS Index, reflecting total sympathetic stimulation, was calculated from mean R-R
intervals, Baevsky’s Stress Index (a positively related value to cardiovascular system stress
and cardiac sympathetic activity), and the Poincaré Plot Index SD2 in normalized units
(related to SDNN) and its interpretation was similar to the PNS Index [34,39]. The SI is an
indicator that represents the degree of load on the ANS control system [40]. It is normalized
by using the square root of Baevsky’s SI [41]. All the analyses were performed with the
software Kubios HRV® (Kuopio, Finland).

To ensure the relative intensity achieved during the test, the median percentage of
maximum HR (%HRmax) performed during the TMST was used as a measure of relative
intensity, which was reported for each stage of the TMST measurements.

2.4.2.1. 2-Minute Step Test

The 2-min step test (TMST), a sub-test of the Senior Fitness Test protocol [42], was
performed. The test consisted of a two-minute step test to assess cardiorespiratory fitness,
recording the number of knee raises that reached at least a 70◦ angle on the thigh-femoral
joint of each participant. Vital signs were evaluated through blood pressure, and the
participant’s well-being was visually checked, prioritizing that they breathed normally,
wore comfortable clothes, and felt physically and mentally fit to perform the test. Then
the participants stood next to a wall and had their iliac crest and patella measured, both
measurements were marked on the wall. Subsequently, a mark was assigned in the middle
of these two distances, indicating the point where they had to raise the knee during the
execution of the test. At the signal “go”, the participant began walking (not running) on
the spot, raising each knee to the mark on the wall as many times as possible in the 2 min.
Only the number of times the right knee reached the required height was counted. That
was the score. After the test, the older person walked slowly for one minute to cool down.
Throughout the test, the participant was monitored through HRV.

2.5. Statistical Analysis

We fitted a constant (intercept-only) Bayesian linear model, estimated using Markov
chain Monte Carlo sampling (MCMC algorithm) with five chains of 50,000 iterations and
a warm-up of 25,000, to describe the variations between analogous assessments of HRV
between the two measurements of the TMST (e.g., variations between the previous measure-
ment from the first and second TMST assessment, i.e., both pre-TMST measurements). A
Gaussian distribution centered around zero (µ = 0) with the scale specified as 2.5 times the
standard deviation (SD) of the response measurement (σ = 2.5× sd(y)), was used as priors,
given that we were assuming that there was no variation between analogous assessments
in between the two TMST measurements, thus µ = 0 reflecting that expectation. The prior’s
scale for each model can be seen in Table A1 in Appendix A. For each model, extreme
outliers were removed using box plot methods, considering values above Q3 + (3 × IQR)
or below Q1 − (3 × IQR).

In addition to previous models, Lin’s concordance correlation coefficient (CCC) and
its 95% credible interval (CI95%) were computed as a measure of agreement between anal-
ogous HRV assessments through the Bayesian approach for the multivariate normal [43]
and labeled according to Evans [44] as follow: CCC < 0.2, Very weak; 0.2 ≤ CCC < 0.4,
Weak; 0.4 ≤ CCC < 0.6, Moderate; 0.6 ≤ CCC < 0.8, Strong; CCC ≥ 0.8, Very strong.
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The use of the Bayesian framework represents an advantage over the classical frequen-
tist paradigm since it allows a direct interpretation of the results, given that full access
to the posterior distribution can be obtained, which allows a better understanding of the
associated uncertainty of the model parameters [45,46].

Following the Sequential Effect eXistence and sIgnificance Testing (SEXIT) framework
to describe the effects from Bayesian models [47], the median and the CI95% (using the
highest density interval) were reported as a measure of centrality and uncertainty, the
probability of direction (pd) as the measure of existence, the proportion of the posterior
probability distribution that falls outside the region of practical equivalence (ROPE) as
a measure of practical significance, estimated as one-tenth (1/10 = 0.1) of the SD of the
response variable, and Bayes factor (BF10) using Savage–Dickey density ratio against the
point null indicating if the null value has become less or more likely given the observed
data [48], using this as a measure of an absolute magnitude of evidence in favor or against
the null hypothesis (of no effect).

For BF interpretation, we considered: BF = 1, no evidence; 1 < BF ≤ 3, anecdotal;
3 < BF ≤ 10, moderate; 10 < BF ≤ 30, strong; 30 < BF ≤ 100, very strong; and BF > 100, as
extreme evidence [49]. For the proportion of the posterior in the ROPE we considered:
<1%, significant; <2.5%, probably significant; ≤97.5% and ≥2.5%, undecided significance;
>97.5%, probably negligible; >99%, negligible [47]. The convergence and stability of
Bayesian sampling have been assessed using R-hat, which should be below 1.01 [50], and
the Effective Sample Size (ESS), which should be greater than 1000 [51].

All computations were performed using the R programming language for statistical
computing on version 4.2.1 [52], and complementary R packages [53–56].

3. Results

A total of 105 participants (male, n = 23 [21.9%]; female, n = 82 [78.1%]) were enrolled
in the study. Sample characteristics and body composition parameters can be observed in
Table 1.

Table 1. Overall and aggregated by sex descriptive statistics of body composition parameters from
the study sample.

Characteristic Overall,
N = 105 1

Sex Comparison

Female,
N = 82 1

Male,
N = 23 1 Difference 2 95% CI 2,3

Age (years) 70.9 ± 5.9 70.3 ± 6.0 73.2 ± 5.0 −0.54 −1.0, −0.07
Body mass (kg) 74 ± 14 74 ± 15 77 ± 10 −0.24 −0.71, 0.22

Height (cm) 155 ± 8 153 ± 6 164 ± 7 −1.7 −2.2, −1.1
Body fat (%) 38 ± 9 41 ± 6 25 ± 6 2.8 2.2, 3.4

Body water (%) 47 ± 6 45 ± 4 55 ± 5 −2.3 −2.9, −1.8
Bone mass (%) 2.74 ± 4.17 2.70 ± 4.73 2.87 ± 0.28 −0.05 −0.51, 0.41

Muscle mass (%) 44 ± 8 41 ± 5 54 ± 6 −2.5 −3.1, −1.9
1 Mean ± SD, 2 Standardized Mean Difference, 3 CI = Confidence Interval.

When analyzing the variations within TMST measurements, we observed strong
evidence in favor of the null hypothesis on post-TMST for all domains except for stress
index, whereas the evidence in favor of the null was moderate. At pre-TMST, we found
strong evidence in favor of the null for RMSSD, HF, and the SNS Index; moderate evidence
in favor of the null for VLF; and anecdotal evidence in favor of the null for LF. Despite the
previous findings, we found very strong evidence in favor of the null hypothesis for PNS,
suggesting a significant shift from pre-TMST-1 to pre-TMST-2; moderate evidence against
the null for SDNN, mean R-R, and anecdotal evidence against the null for the stress index.
The posterior distribution of each ∆ associated with TMST measures and the trace plots
indicating the convergence of each model can be seen in Figures 1 and 2, respectively. The
summary statistics of the posterior distribution of each model can be seen in Table 2.
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Table 2. Summary and model diagnostics for each HRV measurement within TMST assessments. CI,
credible interval; pd, probability of direction; ROPE, region of practical equivalence; ESS, effective
sample size; BF, Bayes factor.

Measure Median
CI 95% 1

pd 3
ROPE 2

R-hat 4 ESS 5 BF 6

CI Low CI High Low High % Inside

∆HRV-pre

RMSSD −0.25 −0.959 0.458 75.8% −0.365 0.365 58% 1.000 83,974 0.050
SDNN 1.52 0.529 2.506 99.8% −0.511 0.511 2.3% 1.000 84,522 3.617

Mean R-R −15.47 −25.602 −5.593 99.8% −5.151 5.151 2.1% 1.000 84,462 3.838
HF −7.38 −36.091 21.513 69.3% −13.735 13.735 59.6% 1.000 83,517 0.048
LF 26.44 4.661 48.151 99.1% −10.659 10.659 7.6% 1.000 80,397 0.720

VLF 5.45 −2.030 13.162 92.2% −3.742 3.742 31.9% 1.000 80,128 0.112
PNS −0.11 −0.174 −0.055 100% −0.030 0.030 0.3% 1.000 84,078 32.902
SNS −0.10 −0.268 0.071 88% −0.087 0.087 42.1% 1.000 82,412 0.079

Stress −1.40 −2.336 −0.430 99.8% −0.487 0.487 3.1% 1.000 82,470 2.526

∆HRV-post

RMSSD −0.03 −0.679 0.605 53.3% −0.330 0.330 68.5% 1.000 85,628 0.040
SDNN 0.48 −0.403 1.382 85.5% −0.452 0.452 45.5% 1.000 84,183 0.070

Mean R-R 0.41 −7.730 8.686 53.9% −4.139 4.139 67.5% 1.000 85,178 0.040
HF −2.62 −36.558 30.969 56.2% −16.815 16.815 66.8% 1.000 83,878 0.041
LF 13.92 −10.604 37.828 87% −12.124 12.124 42.5% 1.000 81,263 0.077

VLF 3.46 −3.116 10.053 85.1% −3.253 3.253 45.4% 1.000 85,824 0.070
PNS −0.01 −0.062 0.041 65.1% −0.026 0.026 64.3% 1.000 82,840 0.044
SNS −0.09 −0.244 0.069 86.1% −0.079 0.079 44.4% 1.000 80,284 0.072

Stress −0.84 −1.871 0.128 95.1% −0.505 0.505 24.9% 1.000 81,326 0.158

1 CI = Credible interval; 2 ROPE = Region of practical equivalence; 3 pd = Probability of direction;
4 R-hat = Potential scale reduction factor; 5 ESS = Effective sample size; 6 BF = Bayes factor.

During the assessments, we observed that the %HRmax achieved during the measure-
ments at TMST-1 was 66.7% CI95%[45.9%, 85.1%] and at TMST-2, the median %HRmax was
68.1% CI95%[46.5%, 88.3%] during measurements. The recorded %HRmax throughout the
TMST assessments can be seen in Figure 3.
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The concordance and agreement limits between measurements can be seen in Table 3
and Figure 4, respectively.
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Table 3. Lin’s concordance correlation coefficients evaluate the agreement between analogous
HRV measurements.

Parameter CCC 2 Interpretation 3 CI 95% 1

Low High

∆HRV-pre

RMSSD 0.722 Strong 0.624 0.808
SDNN 0.651 Strong 0.534 0.751

Mean RR 0.866 Very Strong 0.817 0.911
HF 0.449 Moderate 0.285 0.601
LF 0.376 Weak 0.201 0.540

VLF 0.335 Weak 0.159 0.502
SNS 0.839 Very Strong 0.778 0.893
PNS 0.769 Strong 0.687 0.840

Stress 0.716 Strong 0.614 0.800

∆HRV-post

RMSSD 0.755 Strong 0.666 0.832
SDNN 0.712 Strong 0.608 0.801

Mean RR 0.824 Very Strong 0.758 0.881
HF 0.703 Strong 0.599 0.794
LF 0.656 Strong 0.538 0.761

VLF 0.361 Weak 0.199 0.520
SNS 0.780 Strong 0.698 0.849
PNS 0.755 Strong 0.669 0.832

Stress 0.726 Strong 0.628 0.811
1 CI = Credible Interval; 2 CCC = Lin’s concordance correlation coefficient; 3 Interpretation according to
Evans (1996) [44].

4. Discussion

This study aimed to validate a test–retest short-term exercise protocol for measuring
the autonomic response through HRV in older people to physical exercise. As HRV is
highly sensitive to internal and external factors such as sleep quality and mood [57,58], we
conducted a test–retest protocol repeated during the same day to minimize the influence of
factors other than exercise between assessments.

To the best of our knowledge, this is the first study on the use of HRV to measure
the cardiac autonomic response to exercise in older adults. This is a significant advance-
ment, given that HRV is a valuable tool for identifying patients at cardiovascular risk and
predicting all-cause mortality, neurological disorders, and worse quality of life in older
adults [59–61].

The assessment of autonomic response to functional physical activity has enormous
potential in the clinical setting. It allows for standardized assessments that provide insights
into physiological adaptations to activities in functional contexts and overall health status
in older adults [62,63]. The selection of a low to moderate aerobic exercise modality
is particularly noteworthy as it represents the well-functional spectrum of activities of
daily living during aging. Hence, it is a valuable tool for identifying early indications of
cardiovascular disease and other age-related health issues.

This study provides robust evidence that short-term HRV measurement is reliable
and valid for assessing the cardiac autonomic response to moderate exercise in older
adults. The consistency and reproducibility of HRV measurements in both assessments
demonstrated that they accurately captured the autonomic response to the exercise protocol,
thus supporting the method’s reliability in this population. These findings align with
previous research that has demonstrated the efficacy of HRV as a tool for evaluating
autonomic function in various populations, including older adults [1,5–13]. Using HRV
measurements for this purpose could help clinicians identify and monitor individuals at
higher risk, leading to earlier interventions and better outcomes. Moreover, this study
used Bayesian data analysis to strengthen its statistical methods. The Bayesian analysis
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allows for prior knowledge and uncertainty to be integrated into the analysis, leading
to more precise estimates and efficient use of data. This approach was used to estimate
the reliability and validity of the HRV measurements, resulting in a more accurate and
informative assessment of the autonomic response to exercise in older adults. This valuable
contribution to the field of exercise science could encourage other researchers to adopt this
approach in their research.

However, this study is not without limitations. We included individuals who suffered
from different non-cardiac diseases, which could have affected the HRV measurements.
Additionally, the use of non-probabilistic sampling may have affected the generalizability of
our results. To address these limitations, future research could use more specific eligibility
criteria to minimize the influence of factors other than exercise on the autonomic response,
and a longitudinal design could be used to examine the effects of exercise on HRV over time.

Overall, the findings of this study have important implications for the use of HRV
in assessing the cardiac autonomic response to exercise in older adults. By validating a
test–retest short-term exercise protocol, this study provided a reliable and standardized
method for measuring physiological adaptations to activities in functional contexts and
health status in older adults. This, in turn, could lead to earlier identification of patients
at cardiovascular risk and the development of more targeted interventions that improve
health outcomes in this population. The use of HRV in future research and clinical practice
could significantly impact the health and well-being of older adults. This research has
significant implications for advancing the knowledge of functional autonomic assessments
during physical exercise and providing a foundation for further research in this area.

5. Conclusions

Our results provided moderate to strong evidence for using HRV to measure cardiac
autonomic response to moderate exercise, suggesting that it is sufficiently reliable to
show similar results to those shown in this test–retest protocol. These findings have
significant implications for clinicians involved in active aging programs, as HRV is a
valuable clinical tool that can be used to identify patients at cardiovascular risk and tailor
interventions accordingly.
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Appendix A

Table A1. Information of the prior used for each constant model. Weakly informative priors with large
scales (σ) centered around zero (with µ = 0) were used, allowing some probability to extreme values.

Measure
Prior

Distribution Location Scale

∆HRV-pre

RMSSD normal 0 9.113
SDNN normal 0 12.776

Mean R-R normal 0 128.778
HF normal 0 343.377
LF normal 0 266.465

VLF normal 0 93.548
PNS normal 0 0.756
SNS normal 0 2.175

Stress normal 0 12.178

∆HRV-post

RMSSD normal 0 8.261
SDNN normal 0 11.298

Mean R-R normal 0 103.483
HF normal 0 420.373
LF normal 0 303.097

VLF normal 0 81.326
PNS normal 0 0.645
SNS normal 0 1.964

Stress normal 0 12.629
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