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Abstract: Sharka is a disease affecting stone fruit trees. It is caused by the Plum pox virus (PPV),
with Myzus persicae being one of the most efficient aphid species in transmitting it within and among
Prunus orchards. Other agricultural management strategies are also responsible for the spread of
disease among trees, such as grafting and pruning. We present a mathematical model of impulsive
differential equations to represent the dynamics of Sharka disease in the tree and vector population.
We consider three transmission routes: grafting, pruning, and through aphid vectors. Grafting,
pruning, and vector control occur as pulses at specific instants. Within the model, human risk
perception towards disease influences these agricultural management strategies. Model results show
that grafting with infected biological material has a significant impact on the spread of the disease.
In addition, detecting infectious symptomatic and asymptomatic trees in the short term is critical
to reduce disease spread. Furthermore, vector control to prevent aphid movement between trees
is crucial for disease mitigation, as well as implementing awareness campaigns for Sharka disease
in agricultural communities that provide a long-term impact on responsible pruning, grafting, and
vector control.

Keywords: plum pox virus; aphids; mathematical modeling, agricultural management

1. Introduction

Sharka is one of the most severe diseases that affects stone fruit trees worldwide,
caused by the Plum pox virus (PPV) of the genus Potyvirus from the family Potyviridae.
Sharka symptoms range from slight leaf discoloration to tree death [1]. Although sensitivity
to PPV can vary among Prunus cultivars, most of them show Sharka symptoms and a
certain decrease in productivity [2]. The symptoms shown by infected plants can vary
according to the virus strain, the spatial location, the Prunus species, the plant tissue, and
the season, with spring being the best season to observe symptoms due to temperatures
below 30 degrees Celsius [3,4]. Symptoms include other abnormal shapes, colors, or forms
of leaves and fruits, premature drop of fruits, fruit lesions, etc. Asymptomatic infection
may be more prevalent in warmer climates [5]. In general, infected plants can take several
months to show symptoms and their appearance may be temporary and fade during the
summer months [3,6].

Disease spread depends on biotic and abiotic vectors. Aphids are the leading biotic
vectors of PPV from infested trees to healthy ones present in the orchard or surrounding [3].
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More than 20 species of aphids can transmit the virus in a non-persistent manner, of which
the species Myzus persicae is one of the most efficient in doing so [4]. The intensity of spread
depends on several factors, including the efficacy of the aphid species in transmitting and
its abundance of winged forms, the winds in the area, and the presence of susceptible
cultivars around [5]. The virus can also be transmitted through vegetative propagation
techniques in nursery trading such as grafting [3–5,7].

Unfortunately, infected trees cannot recover and even if the virus does not kill the plant,
they remain PPV-positive. Previous research has reported that virus titers in PPV-positive
trees can drop below the PPV detection levels, using ELISA, during warm weather [8].
Hence, infected trees serve as a reservoir for the virus if not eradicated, as well as nearby
infected weeds and cultivars, due to the action of virus vectors. Consequently, PPV control
relies on public and private prevention measures, such as laws and norms that regulate the
trading of vegetative material susceptible to PPV and control illegal exchange trafficking;
strict quarantine regulations for nursery stock; chemical vector control; proper eradication
of infected material; and the control of weeds and susceptible vegetation [4,5].

Sharka disease was detected in Chile in 1992 and is now distributed in the main Prunus
productive regions: Valparaíso, Metropolitana and O’Higgins; it was also recently detected
in the Maule region [4]. Chile is the leading sweet cherry exporter worldwide and sweet
cherries represent one of the fruits with more economic importance in the country; indeed,
the 2022–2023 export season was expected to report nearly 3 billion USD to the country [9].

Mathematical modeling of disease transmission in plants has been developed to im-
prove the understanding, forecasting, and warning, on different scales, of how infections
spread in plants and plantations due to viruses, bacteria, and fungi [10]. In particular,
epidemiological models of differential equations of the type SIR (susceptible-infectious-
removed) and SEIR (susceptible-exposed-infectious-removed) were introduced to model
the dynamics of vector-transmitted diseases for different types of plants; for example,
citrus [11], banana [12], rice [13], and cereals [14]. Additionally, control techniques are ana-
lyzed in such SIR and SEIR models to evaluate the effects of roguing (removal–destruction
of diseased plants) and replanting (healthy plants). The main results provide feasible
control mechanisms for disease eradication, which could be achieved by implementing
realistic roguing and replanting intensities [15–17].

In order to include variability in the transmission rates, SIR and SEIR models have
included population dynamics and epidemiological aspects of vectors [18]. The interaction
of two or more viruses and their coexistence in a host plant system has been modeled [14,18].
Seasonality has been represented by assuming periodic immigration and death rates, and
biological control has been modeled by introducing an ecological predator into vector
dynamics [19]. Stochasticity and delayed differential equations have been used in models
to include uncertainty and time lags between vectors and disease dynamics [20].

The importance of using mathematical modeling to manage Sharka disease has already
been highlighted [21]. In this work, we incorporate the impact of agricultural mitigation
measures on the spread of Sharka disease in sweet cherry orchards and suggest strategies
to prevent agricultural losses.

The proposed model explicitly incorporates risk perception of the farming community
towards plant viruses that impacts the effective implementation of agricultural management
strategies, which is more likely if individuals in the agricultural community are aware of
the existence of a disease and their role in controlling it [22]. Campaigns that can help
increase this awareness are a combination of agricultural extension programs that transfer
consistent messages, communicate through farmers’ social referents and mass media, and
implement group learning and individual communication with farm advisors, as well as
new forms of knowledge exchange such as crowd-sourcing, since individuals may not even
be aware of plant viruses [22,23]. In general, exposure to agricultural extension services
that create awareness and the level of farmers’ education may be crucial for knowledgeable
pest management [24].
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The following section presents the mathematical model that expresses the dynamics
of the Sharka virus, including variables of interest for the study of mitigation strategies.
Subsequently, in Section 3, the results of the model are shown. Finally, in Section 4, the
discussion and respective conclusions are opened.

2. Materials and Methods

Systems of differential equations have been a helpful tool for understanding the
evolution of different phenomena. There are dynamics where the evolving process is
subject to abrupt changes, represented in pulses. These perturbations have been called
impulsive differential equations (IDE) and are used to model ecological, epidemiological,
and other problems [25–27].

We present a mathematical model of impulsive differential equations to represent the
dynamics of Sharka disease, including tree, vector, and human behavior. We denote the total
tree population by NT and divide it according to its epidemiological states: susceptible (ST),
exposed (ET), symptomatic infectious (IT), asymptomatic infectious (AT), and removed
(RT). This last compartment refers to the trees that have been uprooted. Furthermore, we
have divided the vector population (Nv) into two states: susceptible (Sv) and infectious (Iv).
Table 1 summarizes the definition of model variables.

Table 1. Description of the variables of the model given in system (5).

Variable Description Units *

ST(t) Susceptible trees at time t T
ET(t) Exposed trees at time t T
IT(t) Infectious symptomatic trees at time t T
AT(t) Infectious asymptomatic trees at time t T
RT(t) Removed (uprooted) trees at time t V
Sv(t) Susceptible vectors at time t V
Iv(t) Infectious vectors at time t V
P(t) Human risk perception to Sharka disease at time t R

* T:= tree, V:= vector, R:= Risk perception.

The flow diagram in Figure 1 shows the dynamics of the disease in the tree popula-
tion, where the segmented and dotted lines represent the instants (pulses) in which the
continuous dynamics of the disease are altered. A susceptible tree (ST) can be infected in
three ways: (i) through interaction with an infectious vector (Iv) at a force of transmission

ΨT =
β

v,q
T
r2 ST

Iv

NT
, (1)

where β
v,q
T /r2 represents the transmission rate, whose form can be interpreted as a depen-

dence on the movement of the vector (1/r2) and a seasonal factor (q = 0, 1, 2, 3; for autumn,
winter, spring, summer, respectively); (ii) through infected pruning equipment at certain
instants (pulses, segmented line) at a force of infection

ΦT = β
p,q
T

P∗

P
ST

AT + IT
NT

, (2)

where the transmission rate β
p,q
T P∗/P, depends on a seasonal factor (q) and a dynamic

variable P(t), representing the agricultural worker’s risk perception of Sharka disease
governed by the differential equation adopted from [28–30]

P′ = −λ1(P− P∗) + λ2(IT + RT)/NT (3)

where λ1 is the rate of resistance to change, P∗ is the natural risk perception of the agricul-
tural population and λ2 is the speed of people’s reactions to the presence of symptomatic
trees (IT) and removed trees (RT); (iii) through the introduction of infected grafts at certain
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instants (pulses, dotted line) at a rate λe∆T , where ∆T is the rate of introduction of grafts
and λe is the proportion of infected grafts. The average time that a tree remains exposed is
1/α. The transition rate from an infected tree with symptoms to becoming asymptomatic is
δa,i and the reverse process occurs at a rate δi,a. The average time it takes for a symptomatic
and asymptomatic tree to be uprooted is given by 1/γI and 1/γA, respectively. 1/ΛT is
the average time it takes for a tree to be replaced by a susceptible (healthy) tree after being
uprooted due to Sharka disease. Finally, the natural mortality rate of the tree is given by dT ,
and the recruitment (plantation) by Λ.

Figure 1. Schematics of the disease dynamics for trees. Tables 1 and Table 2 describe, respectively, the
variables and parameters used.

Figure 2 shows the dynamics of the model for the disease in the vector population.
The force of infection of a vector when contacting an infectious tree is given by

Ψv =
β

q
v

r2 Sv(AT + IT)/NT , (4)

where β
q
v/r2 represents the rate of transmission, whose form can be interpreted as a

dependence on the movement of the vector (1/r2) and a seasonal factor (q = 0, 1, 2, 3; for
autumn, winter, spring, summer, respectively). An infected vector recovers at a rate γv;
thus, 1/γv is the average time it takes for a vector to remain in its infectious state. Λv and
dv correspond to the recruitment and natural mortality rates, respectively. Finally, Θq is
an additional vector mortality rate, which occurs in certain instants (pulses) due to the
implementation of preventive and vector control measures.

Figure 2. Schematics of the disease dynamics for vectors. Table 1 and Table 2 describe, respectively,
the variables and parameters used.

The model of impulsive differential equations given by system (5) follows the dynam-
ics from Figures 1 and 2. t = ti and t = tj correspond to the instants in which grafts are
introduced and stone tree pruning is performed, respectively. t = tk are the moments of
vector control, either by natural or chemical means. t = tn are the instants where awareness
campaigns impact risk perception (P, see Equation (3)) of the agricultural community
towards Sharka disease.
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

ṠT(t) = Λ− (β
v,q
T /r2)ST Iv/NT + ΛT RT − dTST

ĖT(t) = (β
v,q
T /r2)ST Iv/NT − (α + dT)ET

˙IT(t) = αET + δi,a AT − (δa,i + γI + dT)IT

ȦT(t) = δa,i IT − (δi,a + γA + dT)AT

ṘT(t) = γI IT + γA AT −ΛT RT

Ṡv(t) = Λq
v − (β

q
v/r2)Sv(AT + IT)/NT + γv Iv − dvSv

İv(t) = (β
q
v/r2)Sv(AT + IT)/NT − (γv + dv)Iv

Ṗ(t) = −λ1(P− P∗) + λ2(IT + RT)/NT



t 6∈ {ti, tj, tk, tn}

ST(t+) = ST − λe∆T(P∗/P)ST

ET(t+) = ET + λe∆T(P∗/P)ST

}
t = ti,

ST(t+) = ST − β
p,q
T (P∗/P)ST(AT + IT)/NT

ET(t+) = ET + β
p,q
T (P∗/P)ST(AT + IT)/NT

}
t = tj

dv(t+) = [1 + Θq](P/P∗)dv
}

t = tk.

P(t+) = [1 + µ]P
}

t = tn.

(5)

Table 2. Description of the parameters of the model given in system (5).

Param. Description Units ∗ Baseline Value Ref.+

Tree
β

v,q
T Transmission rate to tree through vector, on season

q ∗∗.
d−1 [0, 1

5 ]
1
5 ∗ [0, 1

8 , 1, 1
2 ] [31]

β
p,q
T Transmission rate to tree through pruning, on

season q ∗∗.
d−1 [0, 1

100 ]
1

100 [0, 1, 0, 1
3 ]

1/α Average virus-PPV incubation time. d 31
0.17 [32]

1/γI Average time until a symptomatic infectious tree is
uprooted.

d 1
720 C.A.

1/γA Average time until an asymptomatic infectious tree
is uprooted.

d 0 C.A.

δa,i Transition rate from symptomatic to asymptomatic
infectious.

d−1 [ 1
90 , 1

60 ]
1
70 [6]

δi,a Transition rate from asymptomatic to symptomatic
infectious.

d−1 1
240 [6]

ΛT Replacement rate of removed trees. d−1 1
360 [33]

Λ Recruitment rate. T ∗ d−1 NT ∗ dT , NT = 1 1
7200

∆T Grafting rate. d−1 5
100 [34,35]

λe Proportion of infected grafts. Unitless [0, 1] 1
100 C.A.

dT Natural mortality rate d−1 [ 1
35 , 1

15 ]
1

365
1

7200 [36]

ti Time instants where grafting occurs. d 0 [34,35]

tj Time instants where pruning occurs. d 90(1 + 2k), k ∈ N0 [37]
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Table 2. Cont.

Param. Description Units ∗ Baseline Value Ref.+

Vector
β

q
v Transmission rate to vector, on season q ∗∗. d−1 [0, 13

100 ]
13
100 ∗ [1, 1, 1, 1] [31]

1/r2 Vector–host transmission rate reduction due to
vector movement.

Unitless 1
4 [38,39]

1/γv Average time a vector remains infectious. d 0.1 [40]

Λv Recruitment rate. V ∗ d−1 Nv ∗ dv, Nv = 1 1
30

dv Natural mortality rate. d−1 1
30 [41,42]

Θq Mortality rate increase factor, on season q ∗∗. Unitless [0, 0, 3
10 , 3

100 ] C.A.

tk Time instants where vector control occurs. d 180(2k + 1); [33]
90 + 180(2k + 1),
k ∈ N0.

Human
λ1 Rate of resistance to change risk perception. d−1 [0, 1] 0.01 [29,30,43]

λ2 Per capita reaction rate to change risk perception. R ∗ d−1 [0, 1] 0.01 [29,30,43]

P∗ Natural risk perception. R 0.5 [29,30,43]

µ Risk perception increase factor. Unitless 0.1 C.A.

tn Time instants where educational prevention
campaigns occur.

d 90(1 + 4k), k ∈ N0 C.A.

* d:= day, T:= tree, V:= vector. ∗∗ q = 1(autumn), 2(winter), 3(spring), 4(summer), + C.A.= Chosen by author.

3. Results

In this section, we present simulations to show the impact of different risk factors and
mitigation measures on the transmission of Sharka disease in cherry trees. Figures 3–6
show the dynamics of different states of the trees with respect to time.

Figures 3–5a and the black curves in Figure 6 each show a base case scenario, with
parameters as in Table 2. In particular, we assume in this scenario that infection is produced
only by initial grafting, when the orchard is established (ti = 0), such that 1% of the total of
5% grafts made per unit of time were infected. Also, this base scenario considers pruning
at the beginning of winter and summer (tj = 90 and tj = 270 each year, respectively),
with a higher transmission rate through pruning in winter than in summer; vector control
measures applied at the beginning of spring and summer (tk = 180 and tk = 270 each year,
respectively), with a greater impact on vector mortality in spring than in summer; and
awareness campaigns at the beginning of winter (tn = 90 each year). Finally, vector–tree
transmission rates with r = 2 are considered (see Equations (1) and (4)), as well as the fact
that infected symptomatic trees were uprooted on average after two years of presenting
symptoms (γI = 1/720) and asymptomatic trees were not detected (γA = 0). All other
sub-figures are compared to this base case scenario.

Figures 3b,c study the effect of vector arrival in a disease-free orchard, where 1% and
5% of vectors arrive infected, respectively. In particular, Figure 3d compares the dynamics
of the total number of infectious stone fruit trees (IT + AT) over time, for an initial arrival
of 1%, 5%, 10%, 20%, and 50%, showing, as expected, a clear increase in total tree infection
with an increase in the prevalence of initial disease in vectors. In any case, the impact of the
arrival of infected vectors is less than the infection produced by 1% infected grafts (light
blue curve in Figure 3a).
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(a) A total of 1% of infected grafts out of 5% (b) Arrival of 1% infected vectors
of grafts made. in a disease-free orchard.
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Figure 3. Effects of grafting with infected material and arrival of infectious vectors on disease
progress. (a–c) show the curves representing exposed trees (ET , blue), symptomatic infectious trees
(IT , red), asymptomatic infectious trees (AT , green), removed trees (RT , yellow), and the total number
of infectious trees (IT + AT , light blue), for four scenarios: (a) infection is only produced by inserting
1% of infected grafts out of 5% of grafts made initially (ti = 0); (b,c) infection is only produced by the
initial arrival of a percentage of infected vectors (Iv(0)) and no grafting with infected material occurs
(∆T = 0). Initial conditions were taken: in (a) ST(0) = 1, ET(0) = IT(0) = AT(0) = RT(0) = 0;
Sv(0) = 1, Iv(0) = 0, P(0) = P∗; in (b) Sv(0) = 0.99, Iv(0) = 0.01 and the remaining as in (a);
in (c) Sv(0) = 0.95, Iv(0) = 0.05 and the remaining as in (a). (d) shows the total number of infectious
trees (IT + AT) for different initial numbers of infectious vectors (Iv(0)), under the same conditions
as in (b,c). All other parameters used in the simulations are as in Table 2.

Figures 4b,c show the dynamics of the tree states for a scenario where the vector–tree
transmission rates are not reduced (vector movement is not considered, r = 1), and a
scenario where it is reduced by a factor of 1/9 (vector movement becomes more local and
limits widespread transmission, r = 3), respectively. Figure 4d summarizes the dynamics of
the total number of infectious trees (IT + AT) in each case: r = 1 (widespread transmission),
r = 2 (base case transmission), r = 3 (local spread transmission). As expected, we observe
a reduction in the prevalence of the disease in trees with less vector movements. This
emphasizes the importance of preventing the development of winged-form aphids by early
detection and control of overpopulated trees.
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Figure 4. Effects of vector mobility on disease progress. (a–c) show the curves representing exposed
trees (ET , blue), infectious symptomatic trees (IT , red), infectious asymptomatic trees (AT , green),
removed trees (RT , yellow), and the total number of infectious trees (IT + AT , light blue) with respect
to time, for r = 1, r = 2, and r = 3, respectively. (d) shows the total number of infectious trees
(IT + AT) with respect to time and for r = 1 (blue), r = 2 (black), and r = 3 (red). The initial
conditions were taken as in Figure 3a and all other parameters not specified here and used in the
simulations are as in Table 2.

Figure 5 discusses the dynamics of tree states for different removal strategies for
infectious trees. Figures 5a,b show the dynamics when only infected symptomatic trees
are detected and removed after two years and one year on average, respectively. Figure 5c
shows the dynamics when symptomatic and asymptomatic trees are detected and removed
on average within one year after the onset of the disease. Figure 5d illustrates, in one plot,
the curves of the total number of infectious trees (IT + AT) for the three scenarios described
previously (from Figure 5a–c). We can observe a significant approximate reduction of
80% by the third year in the total number of infectious trees compared to the base case
(red vs black curve) when detecting and uprooting not only symptomatic trees, but also
asymptomatic trees early after the onset of the disease.
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Figure 5. Effects of detection and removal of infected trees on disease progress. (a–c) show the curves
representing exposed trees (ET , blue), infectious symptomatic trees (IT , red), infectious asymptomatic
trees (AT , green), removed trees (RT , yellow), and the total number of infectious trees (IT + AT , light
blue) with respect to time. (a,b) represent scenarios where only symptomatic trees (IT) were removed
after two years and one year on average, respectively, after presenting symptoms (1/γT = 720 and
1/γT = 360, respectively). (c) represents a scenario in which symptomatic and asymptomatic trees
were removed after an average of one year after becoming infectious (1/γT = 360 and 1/γA = 360,
respectively). (d) shows scenarios (a–c) for the total number of infectious trees (IT + AT). The initial
conditions were taken as in Figure 3a and all other parameters not specified here and used in the
simulations are as in Table 2.

Figure 6 shows the impact that improving risk perception can have on the disease.
We observe that after increasing the speed of reaction (λ2) and decreasing the resistance
to change (λ1)—parameters that appear in Equation (3) of the risk perception variable
P(t)—the percentage of infected trees decreases by approximately 25% (red curve) by the
third year (Figure 6a), compared to the base case (black curve). Regarding the effectiveness
of prevention campaigns (increasing µ), which are applied at instants tn, and keeping λ1
and λ2 fixed, we can observe from Figure 6b that the percentage of infected trees by the
third year decreases by approximately 35% (black vs red curve). Finally, in the case that
campaigns are effective (increasing µ at certain instants) and resistance to change improves
along with the speed of reaction in people (decreasing λ1 and increasing λ2, respectively,
remaining in time), the decrease in infected trees is significant, reaching a reduction in
infected trees of more than 50% by the third year (see Figure 6c, black vs red curve).
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Figure 6. Effects of risk perception on disease progress. (a–c) show the curve of the total number
of infectious trees (IT + AT) with respect to time. (a) pictures three scenarios for different values
of the resistance to change parameter, λ1, and the rate of reaction to disease, λ2, from Equation (3),
where the black curve represents the smallest level of risk perception, and the red curve the largest.
(b) shows three scenarios for a varying factor of increase in the risk perception, µ, at instants tn

(see Equation (5)), such that the black curve represents the lowest and the red curve the highest
effectiveness of awareness campaigns. (c) shows scenarios (a,b) combined. The initial conditions
were taken as in Figure 3a, and all other parameters not specified here and used in the simulations
are in Table 2.

4. Discussion and Conclusions

We have proposed a mathematical model of impulsive differential equations to express
the dynamics of the disease among trees and vectors. We obtained results that can serve
as input for decision making on mitigation measures against the spread of the virus.
Grafting, pruning, and vector control occur as pulses at certain instants and depend
on a dynamic human behavior toward the presence of the disease. Human behavior
is, in particular, affected by pulse disease awareness campaigns [22–24]. In addition,
we consider the movement and seasonality of vectors that affect disease transmission.
Although several aphid species have been identified as Sharka’s vectors [44], here we used
Myzus persicae as the main aphid vector, considering that it is the main aphid present in
Chilean Prunus orchards [45].

In the proposed model, three routes of Sharka infection are considered between trees:
grafting, pruning, and through vectors (aphids). Our results show that grafting with in-
fected material can be critical for the spread of the virus, even more so than the arrival of
infectious vectors (see Figure 3a,d). Therefore, increasing people’s risk perception for the
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disease that reduces grafting with infectious vegetative material could significantly lower
disease prevalence (see Figure 6 black curve vs blue and red curve). Hence, agricultural
management strategies are suggested to be developed to monitor and test vegetative ma-
terial for grafting, and awareness campaigns that motivate the agricultural community
to purchase grafting material from certified sellers are proposed to be evaluated. Addi-
tionally, the arrival of infectious vectors is also a significant problem that increases disease
prevalence (see Figure 3d). Although there are orchards with rigorous surveillance and
management for PPV vectors, neighboring farms may not provide the same conditions. The
latter become a constant reservoir of the disease, which can be easily transferred through
vector mobility to Sharka-free orchards .

Climatic conditions, orchard maintenance, and vegetation around the property, among
others, predetermine the movement of vectors. Our results describe the impact of vector
movement on disease spread (see Figure 4). Thus, to avoid vector migration to other trees,
preventing the development of winged-form vectors may be critical in keeping the disease
controlled. Since vector overpopulation, as well as other environmental factors, favor the
appearance of winged-form aphids and aphid movement [38,39], applying vector control
measures is essential for mitigation and prevention measures.

Trees, in general, show symptoms of possible infection through their leaves. However,
detecting symptoms by visual inspection with the naked eye alone is complex and certainly
misses asymptomatic infectious trees. The results of our model show the need to detect
infectious trees (symptomatic and asymptomatic) in the short term; otherwise, the spread
of the disease within the orchard may increase significantly (Figure 5), which can produce
considerable economic losses. Therefore, growers should have simple and feasible techno-
logical monitoring mechanisms to detect the virus in their orchards, especially to detect
asymptomatic trees, which are a constant reservoir of the disease. From an agronomic
point of view, the use of molecular tools to provide an early diagnostic of the disease in the
orchard should be implemented routinely [46,47]. Another diagnostic tool that needs to be
studied further is the use of drones to detect symptomatic trees, as these technologies are
becoming widely used and have already been useful for other sweet cherry diseases [48].

The risk perception of individuals in agricultural communities towards this disease
depends on multiple factors: social, psychological, and economic, among others. Our
model considers a change in risk perception according to a dynamic law (see Equation (3)),
in which we have tried to encompass these factors into two: the resistance to change
while reducing risk perception (λ1) and the speed of reaction to disease prevalence (λ2),
while increasing risk perception. Resistance to change can be associated with work, health,
housing, education, food security, beliefs, etc., subject to the unique circumstances around
farmers’ goals and agricultural contexts [22]. The reaction speed can be related to awareness
campaigns, such as information via the media, educational interventions, and socializa-
tion, among others. In our model, risk perception impacts the efficiency and responsible
implementation of vector control, pruning and grafting, and, hence, it impacts the dy-
namics of the disease (see system (5)). When a population experiences a lower resistance
to change and a higher reaction speed, we can observe a decrease in disease prevalence
(see Figure 6a). In addition, we have incorporated into our model the effect of awareness
campaigns that help to increase risk perception (through λ2). Our results show the im-
pact of these campaigns on the number of infectious trees, reducing it considerably (see
Figure 6b). In particular, when awareness campaigns have a long-lasting effect—reducing
in the long-term the resistance to change and increasing the speed of reaction—we observe
a reduction in the curve representing infectious trees by more than 50% of the prevalence
expected without awareness campaigns in a three-year period (see Figure 6c). A higher
risk perception for this disease may encourage growers to implement strategies to prevent
its transmission. Therefore, we hope that after awareness campaigns that impact risk
perception, aphid control [40], virus reservoirs such as weeds [49] and wild Prunus will be
managed [50], and, last but not least, we hope that growers understand the importance of
healthy plant material for the establishment of the Prunus orchard [51].
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In the model presented through impulsive differential equations, environmental,
economic, and dispersion factors, among others, were not involved, but may affect disease
transmission dynamics. For example, it would be of interest to include aphid characteristics
that can affect propagation, such as that winged aphids may facilitate plant infection [52]
or that aphid abundance and feeding may be determined by the presence of natural
predators [39]. Therefore, to evaluate the impact of these variables and others on the spread
of the virus would enrich future work on the transmission and control of Sharka disease.
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