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Abstract 

Background Obesity and central obesity are multifactorial conditions with genetic and non‑genetic (lifestyle 
and environmental) contributions. There is incomplete understanding of whether lifestyle modifies the translation 
from respective genetic risks into phenotypic obesity and central obesity, and to what extent genetic predisposition 
to obesity and central obesity is mediated via lifestyle factors.

Methods This is a cross‑sectional study of 201,466 (out of approximately 502,000) European participants from UK 
Biobank and tested for interactions and mediation role of lifestyle factors (diet quality; physical activity levels; total 
energy intake; sleep duration, and smoking and alcohol intake) between genetic risk for obesity and central obesity. 
BMI‑PRS and WHR‑PRS are exposures and obesity and central obesity are outcomes.

Results Overall, 42.8% of the association between genetic predisposition to obesity and phenotypic obesity 
was explained by lifestyle: 0.9% by mediation and 41.9% by effect modification. A significant difference between men 
and women was found in central obesity; the figures were 42.1% (association explained by lifestyle), 1.4% (by media‑
tion), and 40.7% (by modification) in women and 69.6% (association explained by lifestyle), 3.0% (by mediation), 
and 66.6% (by modification) in men.

Conclusions A substantial proportion of the association between genetic predisposition to obesity/central obesity 
and phenotypic obesity/central obesity was explained by lifestyles. Future studies with repeated measures of obesity 
and lifestyle would be needed to clarify causation.
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Background
Obesity is a common condition with a global preva-
lence that has nearly tripled since 1975, and the World 
Health Organization (WHO) considers obesity to pose 
a significant burden on public health [1]. It is regarded 
as a major risk factor for chronic disease, especially for 
cardiometabolic disease [2]. Whilst body mass index 
(BMI) is the most commonly used measure of overall 
adiposity, waist-hip ratio (WHR) is a better measure 
of central adiposity which is more related to the risk of 
cardiometabolic disease [3].

Obesity results from complex relationships between 
a wide range of genetic, lifestyle, and environmental 
factors, rather than a sole risk factor [4]. This means 
that, whilst some people have a higher genetic predis-
position to adiposity, their actual level of adiposity will 
also be influenced by their environment and lifestyle 
[5], such as physical activity level and energy intake [6, 
7]. This is important for public health interventions. 
Firstly, in contrast to genetic factors, lifestyle and envi-
ronment can be modifiable. Secondly, if interactions 
exist then non-modifiable risk factors such as genetics 
may, nonetheless, be useful in targeting public health 
interventions at those most likely to benefit; com-
monly referred to as precision medicine or precision 
public health.

Many aspects of lifestyle, including physical activity 
level [8], energy intake, diet quality [9], sleep duration 
[10], smoking [11]and alcohol consumption [12], are 
known to be associated with obesity and central obe-
sity. However, it is unclear to what extent genetic pre-
disposition to adiposity is mediated via predisposition 
to unhealthy lifestyle (vertical pleiotropy) or whether 
it operates primarily via other mechanisms. Further-
more, studies on gene-lifestyle interactions and obesity 
and central obesity have been limited in number and 
have focused on diet [13], physical activity [14, 15], 
and sleep [16]. Few studies have investigated whether 
other lifestyle risk factors, such as alcohol consump-
tion and smoking, modify genetic predisposition to 
obesity.

In this study, we conducted comprehensive analy-
ses to investigate the extent to which lifestyle factors 
(physical activity level, energy intake, diet quality, sleep 
duration, smoking, and alcohol consumption) modify 
the relationship between BMI and WHR polygenic risk 
scores (PRS) and phenotypic obesity and central obe-
sity. We also conduct mediation analyses to quantify 
the extent to which the pathway from genetic predis-
position to obesity is direct (independent of lifestyle) 
or indirect (genes predispose to lifestyle which predis-
poses to obesity).

Methods
Study design
This cross-sectional study used baseline data from the 
UK Biobank, a population cohort study. From April 
2006 to December 2010, 502,536 participants, who were 
largely between 40 and 70 years old were recruited [17]. 
Participants attended one of the 22 assessment cen-
tres across England, Wales, and Scotland, at which they 
completed a touch-screen questionnaire (including self-
reported physical activity level, total energy intake, diet 
intake, sleep duration, smoking frequency, and alcohol 
consumption), underwent physical measurements, and 
provided biological samples, as described elsewhere [18].

The main outcome measures investigated in this study 
were obesity and central obesity. BMI-PRS and WHR-
PRS were the exposures of interest [19]. Lifestyle fac-
tors—physical activity level, total energy intake, diet 
quality, frequency of alcohol consumption, and smok-
ing status—were investigated as potential mediators and 
effect modifiers. Sex, age, and sociodemographic depriva-
tion were considered potential confounders and included 
as covariates in the statistical models, and the WHR-PRS 
models were stratified by sex because of a significant sta-
tistical interaction between WHR-PRS and sex.

Inclusion in the study was restricted to participants 
who self-reported white British ethnicity to avoid het-
erogeneity (> 90% of the sample), and those whose BMI 
was ≥ 18.5  kg/m2 (i.e. non-underweight) to avoid non-
linear associations of BMI. We excluded participants 
who reported never drinking alcohol because of potential 
confounding (e.g. stopped due to poor health), and those 
with missing data on BMI-PRS and WHR-PRS and/or 
failed genetic quality controlling. Overall, 312,748 eligi-
ble participants had genetic data available for use in this 
study. After excluding people who had missing data on 
physical activity level, diet risk score, alcohol consump-
tion, sleep duration, and smoking status, the final study 
sample was n = 201,446. UK Biobank received ethical 
approval from the North-West Multi-centre Research 
Ethics Committee (reference: 11/NW/03820). All par-
ticipants provided written, informed consent based on 
the principles of the Declaration of Helsinki before enrol-
ment in the study. This project was completed using UK 
Biobank data application 71392 (Fig. 1).

Outcomes and covariates
During the baseline assessment, participants’ height 
(Seca 202 stadiometer; Sca) and weight (BC-418 MA 
body composition analyzer; Tanita Corp) were meas-
ured by trained nurses [20]. Waist and hip circumference 
were measured using a Wessex non-stretchable sprung 
tape measure [21]. BMI was calculated from weight in 
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kilogrammes divided by height in metres squared, and 
WHR was calculated as waist measurement divided by hip 
measurement [22]. Obesity was defined as BMI ≥ 30 kg/m2. 
Central obesity was defined as WHR ≥ 0.85 in women 
and WHR ≥ 0.90 in men.

Area-based socioeconomic status was measured by the 
Townsend score, which was derived from census data on 
housing, employment, social class, and car availability by 
postcode of residence [23]. A higher Townsend score rep-
resents a higher level of deprivation. More detailed infor-
mation can be found in the UK Biobank online protocol 
(http:// www. ukbio bank. ac. uk).

In the baseline assessment, participants self-reported 
their physical activity level using the International Physi-
cal Activity Questionnaire (IPAQ) [24]. Low physical 
activity level was defined as < 600 MET-min/week [24].

Dietary information was collected via the Oxford WebQ 
questionnaire which is based on self-reported 24-h recall. 
It records the usual consumption of a range of foods and 
was designed for use in large population studies [25]. Par-
ticipants were invited on five occasions to complete an 
online questionnaire between April 2009 and June 2012. 
For participants who completed more than one question-
naire, we derived the average intake from the question-
naires completed. Total energy intake and energy derived 
from each macronutrient were calculated, in kilocalories 

per day, using the information recorded in the 7th edition 
of McCance and Widdowson’s The Composition of Foods 
[26]. High total energy intake was defined as > 2,000 kcal/
day for women and > 2500  kcal/day for men, in accord-
ance with the NHS guideline (https:// www. nhs. uk/ live- 
well/ healt hy- weight/ manag ing- your- weight/ under stand 
ing- calor ies/). The sample size for analysis using these 
energy intake variables was 95,437.

Since the dietary recall was available in less than 
half of the UK Biobank participants, this study used a 
cumulative dietary quality score [27] from the food fre-
quency questionnaire, which was completed by most 
participants. Twenty-one of the 27 items in the score 
were deemed to be relevant to the study and therefore 
included: cooked vegetables, salad/raw vegetables, fresh 
fruit, dried fruit, oily fish, non-oily fish, processed meat, 
poultry, beef, lamb, pork, cheese, milk type used, spread 
type, bread type, cereal intake, cereal type, salt added to 
food, tea, coffee, and water. We then collapsed beef, pork, 
and lamb into red meat; oily fish and non-oily fish into 
total fish; and fresh fruit, dried fruit, salad vegetables, and 
cooked vegetables, into fruit and vegetables, resulting in 
15 items. Six of them have unknown or uncertain asso-
ciations with health outcomes (such as poultry) or were 
not available for the full cohort (such as cereal type) and, 
therefore, were not included in the cumulative dietary 

Fig. 1 Participants flow chart

http://www.ukbiobank.ac.uk
https://www.nhs.uk/live-well/healthy-weight/managing-your-weight/understanding-calories/
https://www.nhs.uk/live-well/healthy-weight/managing-your-weight/understanding-calories/
https://www.nhs.uk/live-well/healthy-weight/managing-your-weight/understanding-calories/
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quality score. Finally, we included the remaining nine of 
the 15 food items in the score (processed meat, red meat, 
total fish, milk, spread type, cereal intake, salt added to 
food, water, and fruits and vegetables). As food item data 
were collected using various frequencies of consumption 
(such as never, less than once a week, or once a week), all 
food items were dichotomised into meeting or not meet-
ing recommendations using cut-offs derived from the UK 
and European food-based dietary guidelines (the Eatwell 
Guide [28] and the Food-Based Dietary Guidelines from 
the European Food Safety Authority [29]) or median 
food intake where specific recommendations did not 
exist [30]. We assigned one point to participants for each 
healthy category met, defined as processed meat less than 
once per week [28, 31]; red meat less than once per week 
[28, 31]; total fish more than twice per week [28]; no con-
sumption of full-cream milk or non-dairy milk [28, 29]; 
no intake of spread [30]; more than five bowls per week 
of cereal [30]; no salt added to food [28, 29]; more than 
six glasses per day of water; and more than five serv-
ings per day of fruit and vegetables [28, 29]. Participants’ 
points were summated to create an unweighted score, 
with a minimum score of 0 representing the least healthy 
diet, and a maximum score of 9 representing the healthi-
est diet. Low diet quality was defined as a diet quality 
score < 5.

Smoking status was self-reported at baseline and clas-
sified as either ever smoker (current or former smoker) 
or never smoker. Alcohol intake was self-reported as 
the number of units consumed per week and > 14 units/
week was defined as high alcohol intake. Self-reported 
sleep duration was categorised into abnormal sleep dura-
tion (< 7  h/day or > 9  h/day) and normal sleep duration 
(7–9 h/day) [16].

Exposures
For this study, we used the updated genetic data (October 
2018), which is available on 488,377 participants [32]. Of 
these, 438,427 samples were genotyped using Affymetrix 
UK Biobank Axiom Array with 825,927 markers (Santa 
Clara, CA, USA), and the remaining 49,950 were geno-
typed using the Affymetrix UK BiLEVE Axiom array with 
807,411 markers. These two arrays are extremely simi-
lar (sharing more than 95% same content). To maxim-
ise homogeneity and BMI-PRS applicability, we exclude 
participants who did not self-report their ethnicity as 
white British, and those with missing data on BMI-PRS 
and WHR-PRS. Further information on the genotyping 
process is available on the UK Biobank website (http:// 
www. ukbio bank. ac. uk/ scien tists-3/ genet ic- data), which 
includes detailed technical documentation (https:// www. 
nature. com/ artic les/ s41586- 018- 0579-z).

We used a standard set of sample quality-control pro-
cedures, applying statistical tests designed mainly to 
check for consistency of genotype calling across experi-
mental factors and the indicators of missing rate and het-
erozygosity to identify poor quality samples, conducting 
quality control specific to the sex chromosomes using 
a set of high-quality markers on the X and Y chromo-
somes [32]. We only used markers present on both the 
UK BiLEVE and UK Biobank Axiom arrays and excluded 
those that markers failed to pass the quality control in 
more than one batch, had a greater than 5% overall miss-
ing rate, and had < 0.0001 minor allele frequency (MAF). 
We removed samples that were identified as outliers for 
heterozygosity and missing rate [32].

LDpred [33] was used to generate the BMI-PRS [34] and 
WHR-PRS [19]. LDpred adjusts GWAS summary statistics 
to account for linkage disequilibrium (LD) between SNPs, 
creating a single genome-wide score using an infinitesimal 
model. The raw summary statistics are adjusted using 1000 
unrelated UK Biobank participants as the LD reference 
panel, who were not used in the main analyses. These partic-
ipants are white British, whose self-reported sex match their 
genetically determined sex, who do not have purported sex 
chromosome aneuploidy, and who are not determined by 
UK Biobank to be outliers for heterozygosity. Scores are 
then generated using these LD-adjusted summary statistics 
in those who pass the same genetic quality control as above 
and were not used in the LD reference panel.

Statistical analyses
Participant characteristics were firstly compared by 
BMI-PRS and WHR-PRS categories. The weighted PRS 
scores were transformed into z scores and categorised as 
PRS <  − 1 (i.e. more than 1 standard deviation (SD) below 
the mean), − 1 < PRS < 0, 0 < PRS < 1, and PRS > 1. All the 
lifestyle factors were classified as binary variables in the 
pre-specified deleterious direction. The sociodemo-
graphic and lifestyle characteristics of the PRS categories 
were summarised using frequencies and percentages and 
compared using chi-square tests.

The first set of analysis focuses on mediation. Logistic 
regression was used to investigate whether lifestyle fac-
tors mediated the associations between PRS and obesity. 
In this analysis, BMI-PRS and WHR-PRS were the expo-
sures, and the outcomes were obesity (BMI ≥ 30  kg/m2) 
and central obesity (WHR ≥ 0.9 for men and WHR ≥ 0.85 
for women), respectively. We tested for statistical interac-
tions between sex and BMI-PRS and WHR-PRS. Where 
the interactions were significant, the models were run 
stratified by sex. The models were adjusted for potential 
confounders (age, sex, and deprivation), the 10 principal 
genetic components (PGC) (to correct for population 

http://www.ukbiobank.ac.uk/scientists-3/genetic-data
http://www.ukbiobank.ac.uk/scientists-3/genetic-data
https://www.nature.com/articles/s41586-018-0579-z
https://www.nature.com/articles/s41586-018-0579-z
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stratification), and the genotyping chip used. Each of the 
lifestyle factors was then added sequentially.

The second analysis focuses on interaction. Strati-
fied logistic regression models were then used to test for 
interactions between PRS and lifestyle factors. Separate 
models were run for each lifestyle factor. Interaction 
terms were included to investigate whether individual 
lifestyle factors interacted with obesity-related PRS (low 
PRS defined as PRS < 0; high PRS defined as ≥ 0) on the 
multiplicative scale. The additive interaction metric, 
relative excess risk due to interaction (RERI), was also 
derived [35]. The dichotomisation of PRS is required for 
calculating RERI and is only used for this analysis.

Finally, a 4-way decomposition was used to quantify 
how much of the total association between BMI-PRS/
WHR-PRS and obesity and central obesity could be 
attributed to mediation, additive interaction, or neither 
[36]. The association between PRS and outcome was 
estimated as an odds ratio (OR) in the logistic regression 
model. This method further decomposes the OR (‘total 
effect’) into: OR via interaction with lifestyle (‘effect 
due to interaction’), OR via mediation through life-
style (‘mediated effect’), and OR not via lifestyle (‘direct 
effect’). Because the logistic regression model oper-
ates on the logistic scale, it could be interpreted as total 
effect = effect due to interaction * effect due to mediation 
* effect not due to lifestyle. The results were presented as 
the overall proportion of excess prevalence attributable 
to additive interaction ([effect due to interaction − 1]/
[total effect − 1]) and mediation ([mediated effect − 1]/
[total effect − 1]). The total lifestyle in 4-way decompo-
sition analyses represents the mediation/modification 
role of when combining all lifestyles together (PAL, diet 
quality, etc.), and adjusting age, sex, deprivation, genetic 
principal components and chip. In a sensitivity analy-
sis, all lifestyle factors were also adjusted mutually for a 
conservative estimate. Because there is a slight difference 
in BMI-PRS by sex, we conducted a sensitivity to adjust 
for BMI-PRS*sex interaction as a covariate in the final 
4-way decomposition analysis. All statistical analyses 
were conducted using R, with the cmest function from 
the CMAverse package and two-sided P < 0.05 was con-
sidered statistically significant.

Results
Study population characteristics
UK Biobank is a prospective general population cohort 
of approximately N = 502,000. The study population here 
comprised ultimately 201,466 participants with com-
plete data, with a mean age of 58 years, of whom 101,278 
(50.3%) were female. Participants with higher BMI-PRS 
and WHR-PRS scores were less deprived and more likely 
to be male (Table 1). Overall, 33,889 (16.8%) participants 

had low levels of physical activity (< 600 MET-min/
week), 58,839 (29.2%) had poor quality diets (diet qual-
ity score < 5), 48,237 (23.9%) had abnormal sleep duration 
(> 9 or < 7  h/day), 96,225 (47.8%) had high alcohol con-
sumption (> 14 unit/week), and 92,084 (45.7%) were ever 
smokers. Of the 95,457 participants with dietary energy 
information, 36,940 (38.7%) had high energy intake 
(> 2000 kcal/day for women and > 2500 kcal/day for men).

Mediation roles of lifestyle factors
There was a significant interaction between sex and 
WHR-PRS in relation to phenotypic central obesity 
(P < 0.001), but there was no interaction between sex and 
BMI-PRS in relation to phenotypic obesity (P = 0.446). 
Therefore, all subsequent analysis using WHR-PRS is 
sex-stratified.

BMI-PRS and WHR-PRS were associated with higher 
odds of low physical activity level, abnormal sleep dura-
tion, and ever smoking, whilst WHR-PRS was associated 
with poor quality diet. Conversely, BMI-PRS and WHR-
PRS were associated with lower odds of high dietary 
energy intake in both sexes and high alcohol intake in 
women (Additional file 1: Fig. S1 and S2).

All unhealthy lifestyle habits were significantly associ-
ated with higher odds of obesity and central obesity both 
in men and women, apart from high alcohol consump-
tion which was significantly associated with lower odds 
of obesity. High dietary energy intake which was not sig-
nificantly associated with the prevalence of central obe-
sity in men (Additional file 1: Fig. S3 and S4).

Both BMI-PRS and WHR-PRS were significantly asso-
ciated with phenotypic obesity and central obesity (Addi-
tional file  1: Fig. S5 and S6). Following adjustment for 
lifestyle risk factors, the effect sizes were not attenuated 
and the associations between both PRS scores and phe-
notypic obesity and central obesity remained statistically 
significant.

Interactions between PRS and lifestyle
Figure  2 presents the association between obesity and 
the different combinations of BMI-PRS score and life-
style factors. Among people with a low genetic predis-
position to obesity, high energy intake and high alcohol 
consumption were not significantly associated with 
increased prevalence of obesity (Fig.  2). For all of the 
lifestyle factors, the additive interactions (RERI) were 
all significant except for high alcohol intake. Results are 
similar for WHR-PRS and central obesity (Figs.  3 and 
4). All RERIs were significant except for energy intake 
in men and alcohol intake in women. However, in men 
and women with a low genetic predisposition category, 
high energy intake was not significantly associated 
with an increased prevalence of phenotypic central 
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obesity (Figs. 3 and 4). The interactions were all signifi-
cantly associated with RERIs except for the interaction 
between WHR-PRS in females and alcohol intake, and 

the interaction between WHR-PRS in males and energy 
intake. In contrast to additive interactions, multiplica-
tive interactions did not reach statistical significance, 

Fig. 2 Combined association of BMI‑PRS and lifestyle risk factors with obesity. Adjusted for age, sex, deprivation index, 10 principal genetic 
components, and chip

Fig. 3 Combined association of WHR‑PRS and lifestyle risk factors with central obesity in men. Adjusted for age, deprivation index, 10 principal 
genetic components, and chip
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except for BMI-PRS and energy intake, alcohol con-
sumption, and sleep duration, WHR-PRS and diet qual-
ity in men, and WHR-PRS and total energy intake in 
women.

Combined interaction and mediation effects
Figure  5 summarises the overall contribution of each 
lifestyle risk factor, through interaction and mediation, 
to the association between genetic predisposition and 

Fig. 4 Combined association of WHR‑PRS and lifestyle risk factors with central obesity in women. Adjusted for age, deprivation index, 10 principal 
genetic components, and chip

Fig. 5 The proportion of excess risk due to BMI/WHR‑PRS is attributable to the interaction and mediation of lifestyle risk. Estimated from 4‑way 
decomposition analysis. Adjusted for age, deprivation index, 10 principal genetic components, and chip
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phenotypic obesity and central obesity, and the contribu-
tion of lifestyle as a whole. All interactions were statisti-
cally significant (p < 0.001).

Overall, 42.8% of the association between BMI-PRS 
and phenotypic obesity could be explained by over-
all lifestyle; 0.9% was mediated via lifestyle and 41.9% 
was attributable to effect modification by lifestyle 
(Fig.  5 panel a). Among women, 42.1% of the associa-
tion between WHR-PRS and phenotypic central obesity 
was explained by lifestyle; 1.4% was mediated by lifestyle 
and 40.7% was attributable to interactions with lifestyle 
(Fig. 5 panel c). The contribution of lifestyle was greatest 
in relation to central obesity in men, with 69.6% of the 
association between WHR-PRS and phenotypic central 
obesity explained by lifestyle; 3.0% mediated by lifestyle 
and 66.6% attributable to interactions with lifestyle (Fig. 5 
panel b).

The findings were largely consistent with slight changes 
in estimates in the 4-way decomposition analysis with 
the additional adjustment of BMI-PRS * sex interaction 
(Additional file 1: Fig. S7).

Discussion
Our findings in white participants of the UK Biobank 
suggest that genetic predisposition to obesity and central 
obesity does not inevitably lead to phenotypic obesity and 
central obesity. Within the cohort studied, almost half of 
the association between genetic predisposition to obesity 
and phenotypic central obesity could be explained by life-
styles that increased the likelihood of genetic predisposi-
tion being realised. If these findings were proven causal, 
which we were not able to establish in this study, almost 
half of the effect of their genetic predisposition was 
potentially avoidable by lifestyle modification. In men, 
the contribution of lifestyle to phenotypic central obesity 
was even higher, with lifestyle accounting for 70% of the 
likelihood of genetic predisposition being realised.

Individuals with a higher genetic predisposition to 
obesity and/or central obesity were more likely to have 
low physical activity levels, abnormal sleep duration and 
poor-quality diets. This suggests that individuals with 
high genetic predisposition may be more likely to ben-
efit most from health promotion interventions focused 
on these lifestyle factors. Within the population studied, 
people with higher genetic predisposition to obesity and 
central obesity were also healthier in some regards; spe-
cifically, lower energy and alcohol intake. It is possible 
that some of the differences in lifestyle reflected verti-
cal pleiotropy; the same genes predisposing to poor life-
style and thereby to obesity and central obesity. However, 
our findings suggested that very little of the association 
between genetic predisposition and phenotypic obesity 
and central obesity was mediated via lifestyle. It is also 

plausible that some of the differences in lifestyle reflect 
obesity-related lifestyle choices whereby people who 
know they are prone to weight gain choose to restrict 
their energy intake either overall or via reduced alcohol 
consumption or choose to smoke because of the negative 
association between smoking and weight [37].

Our findings for interaction analyses suggest that, in 
general, both genetic predisposition and an unhealthy 
lifestyle (specifically lack of physical activity, abnormal 
sleep duration and poor-quality diet) increase the prev-
alence of obesity and central obesity, in addition to the 
above lifestyle factors, smoking status and alcohol con-
sumption also have a similarly large effect on central 
obesity both in male and female. And they both lead to 
an even higher prevalence. However, whilst high genetic 
predisposition increases prevalence irrespective of life-
style, the adverse effect of consuming excess calories is 
restricted to those who have a higher genetic predisposi-
tion. Additionally, it is not meaningful to study the role of 
a single lifestyle factor with obesity solely when the inter-
action is significant and apparent, and the magnitude of 
the role of the factor must be studied by considering dif-
ferent levels of other lifestyle factors [35].

Our findings in relation to BMI are consistent with 
previous prospective studies suggesting that higher BMI-
PRS correlates with lower physical activity levels [38, 39], 
and the association between BMI-PRS and obesity was 
moderated by diet quality [40–42], alcohol intake [43], 
sleep duration [16], and physical activity levels [44, 45]. 
Fewer studies have investigated whether lifestyle mod-
erates the association between WHR-PRS and central 
obesity. Only in a study of 68,317 people of European 
ancestry, was there a small but statistically significant 
interaction between dietary score and BMI-adjusted 
WHR in relation to WHR-PRS [42].

Previous studies on mediation have focused on physi-
cal activity and diet, specifically whether genetic predis-
position is mediated via individual differences including 
eating behaviour and appetite. Both emotional eating and 
eating disorders have been shown to mediate the rela-
tionship between BMI-PRS and obesity [46], and individ-
uals at a higher genetic prevalence of obesity tended to be 
more habitually and situationally disinhibited when eat-
ing and had a greater tendency to feel hungry in response 
to the environment, resulting in a greater prevalence of 
obesity [47]. The mediating role of physical activity has 
been investigated specifically in relation to the fat mass 
and obesity-associated (FTO) genotype, with studies 
observing that both sedentary time and physical activity 
level mediated the association between FTO genotype 
and BMI [48, 49]. Chuang et  al. demonstrated in 697 
participants that a substantial amount of the association 
between FTO and adiposity was mediated by personality 
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aspects (e.g. excitement-seeking), high energy consump-
tion, and aspects of brain function (as indexed by func-
tional magnetic resonance imaging) [50].

The strengths of this study firstly, investigation of two 
different measures of adiposity in the same large, popu-
lation cohort: BMI as a measure of overall obesity and 
WHR as a measure of central obesity. Secondly, having 
observed a significant interaction with sex, sex-strati-
fied analyses were conducted for all analyses involving 
WHR-PRS. Finally, we were able to investigate a wide 
range of lifestyle factors; whether they were associated 
with obesity and central obesity independently of each 
other, whether they mediated the association between 
genetic predisposition to obesity and central obesity, and 
whether they modified these associations.

One of the limitations of the study was that the UK 
Biobank is not representative of the UK population 
in terms of the demographic and lifestyle characteris-
tics of participants [51]. Therefore, whilst effect sizes 
can be generalised, prevalence and estimates derived 
from prevalence should not be automatically gener-
alised. Since the lifestyle of UK participants is gener-
ally healthier than the general population, it is likely 
that the attributable percentages may be larger in the 
general population than those reported here. Within 
the UK Biobank, European participants were the only 
ethnic group sufficiently powered to study genetic 
interactions [52] and, owing to different genetic sus-
ceptibilities and lifestyles, our findings should not be 
generalised to other ethnic groups, so the role of life-
style in these groups remains unknown pending fur-
ther research [53]. Secondly, whilst we adjusted for 
known, measured confounders such as age, sex and 
socioeconomic status, residual confounding is pos-
sible in any observational study. Lifestyle factors were 
self-reported and potentially subject to measurement 
error and reporting bias [54], and lifestyle factors and 
adiposity were measured at a single time-point but may 
vary over time. Future studies are required to corrobo-
rate our findings in more diverse populations with dif-
ferent lifestyle profiles. Whilst we investigated a range 
of lifestyle factors but could not identify weight type 
when it increased because of increment of lean body 
mass, future studies should investigate additional fac-
tors, such as psychological traits and appetite [55], and 
identify specific different weight types, to broaden our 
understanding of gene-lifestyle interactions and media-
tion. Finally, given that our study used cross-sectional 
data, the findings could not prove causality between the 
mediators and obesity, or on the development of obe-
sity [56]. It is particularly difficult to disentangle the 
relationship between lean mass, obesity, and energy 

intake as obesity development also increases lean mass 
which could require higher energy intake. The associa-
tion between alcohol and obesity could also be subject 
to various biases as in other epidemiologic studies [57].

Conclusions
In summary, the study shows that the extent to which 
genetic predisposition results in phenotypic obesity 
and central obesity is primarily, and significantly modi-
fied by lifestyle. If the causal assumption in this study 
holds, people who were genetically predisposed to obe-
sity and central obesity were particularly suspectable to 
the effect of lifestyle.
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