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Abstract: Antimicrobial resistance (AMR) is one of the most pressing public health chal-
lenges of the 21st century. This study aims to evaluate the efficacy of mass spectral data
generated by VITEK® MS instruments for predicting antibiotic resistance in Staphylococcus
aureus, Escherichia coli, and Klebsiella pneumoniae using machine learning algorithms. Addi-
tionally, the potential of pre-trained models was assessed through transfer learning analysis.
A dataset comprising 2229 mass spectra was collected, and classification algorithms, in-
cluding Support Vector Machines, Random Forest, Logistic Regression, and CatBoost,
were applied to predict resistance. CatBoost demonstrated a clear advantage over the
other models, effectively handling complex non-linear relationships within the spectra and
achieving an AUROC of 0.91 and an F1 score of 0.78 for E. coli. In contrast, transfer learning
yielded suboptimal results. These findings highlight the potential of gradient-boosting
techniques to enhance resistance prediction, particularly with data from less conventional
platforms like VITEK® MS. Furthermore, the identification of specific biomarkers using
SHAP values indicates promising potential for clinical applications in early diagnosis.
Future efforts focused on standardizing data and refining algorithms could expand the
utility of these approaches across diverse clinical environments, supporting the global fight
against AMR.

Keywords: antibiotic resistance; Staphylococcus aureus; Escherichia coli; Klebsiella pneumoniae;
machine learning; transfer learning

1. Introduction
The alarming increase in antibiotic-resistant bacterial strains has led the World Health

Organization (WHO) to declare this issue one of the most serious health challenges of
the 21st century, with an estimated 4.95 million deaths annually associated around the
world [1]. In the United States, this problem is responsible for more than 23,000 deaths
annually [2]. Projections indicate that, by 2050, it will cause over 10 million deaths globally,
according to the WHO. In Chile, this problem is also on the rise. Data from the Instituto
de Salud Pública (ISP) indicate a significant increase in resistant bacteria over recent
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years [3]. For example, resistance to oxacillin in Staphylococcus aureus increased from 37.5%
in 2017 to 43.3% in 2020, establishing it as one of the leading causes of surgical wound and
bloodstream infections. Similarly, resistance to ciprofloxacin and cefotaxime in Klebsiella
pneumoniae increased significantly, reaching 73.9% and 74%, respectively, in 2020 [4]. Recent
studies have identified key contributors to this crisis, including the misuse of antibiotics
in both medicine and agriculture [5,6], as well as environmental factors that facilitate the
dissemination of resistance genes [7,8].

In current clinical practice, antibiotic resistance is primarily determined using meth-
ods such as antimicrobial susceptibility testing (AST). However, these culture-based
methods require 24 to 72 h to produce results, compelling clinicians to prescribe em-
pirical or broad-spectrum treatments in urgent cases. This underscores the need to
develop novel methodologies that enable the faster and more accurate detection of
antibiotic resistance.

The problem of antimicrobial resistance has been addressed from various perspec-
tives, including the development of new antibiotics [9], the implementation of biochemical
strategies to mitigate resistance, and the enhancement of the efficacy of existing antibi-
otics [10]. In recent years, machine learning (ML) has emerged as a crucial tool in addressing
this public health crisis [11,12]. For instance, graph neural networks have been used to
identify new chemical compounds with antibiotic potential against methicillin-resistant
Staphylococcus aureus (MRSA) [13]. Furthermore, bacterial genome sequencing has en-
abled the development of machine learning models to identify strains resistant to specific
antibiotics [14,15].

One technique that has garnered significant interest due to its speed, accuracy,
and cost-effectiveness is MALDI-TOF mass spectrometry (Matrix-Assisted Laser Des-
orption/Ionization Time-Of-Flight) [16]. The protein profile generated by this technique
enables clear differentiation between bacterial species [17,18], including the distinction
between resistant and susceptible strains to specific antibiotics [19,20]. The integration of
this technique with machine learning models has shown great promise as a powerful tool
to enhance clinical decision-making in antibiotic treatments [21].

This study proposes an innovative approach to predict antimicrobial resistance in
Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, which the WHO prioritizes.
Mass spectra were obtained using MALDI-TOF VITEK® MS instruments. Then, various
machine learning algorithms, including Support Vector Machines, Random Forest, Logistic
Regression, and CatBoost, were applied to identify specific resistance patterns. A notable
innovation of this work is the evaluation of transfer learning (TL) to integrate data from
different mass spectrometry instruments, enabling the adaptation of models across diverse
platforms. This approach represents a significant advancement, as it could facilitate the
deployment of robust models in multiple clinical settings, improving the precision and
applicability of predictive diagnostic tools in the fight against antimicrobial resistance.
Figure 1 summarizes the workflow of the applied methodology.
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Figure 1. Antimicrobial resistance prediction workflow based on MALDI-TOF mass spectrometry.
(A) Data collection: bacterial mass spectra are acquired using the MALDI-TOF VITEK MS (BioMérieux).
(B) Antimicrobial susceptibility testing: bacterial resistance profiles are determined through laboratory
assays. (C) Spectral pre-processing: data are normalized, and the most relevant peaks between
2000 and 10,000 Da are selected. (D) Recursive feature elimination: dimensionality is reduced by
selecting the most informative peaks for classification. (E) Classification: performed using tenfold
cross-validation and hyperparameter tuning with models such as Logistic Regression, Random Forests,
Support Vector Machines, and transfer learning. (F) Evaluation: metrics include AUROC, AUPRC,
balanced accuracy, and F1 score. Results are further interpreted using SHAP values to identify key
spectral peaks contributing to antimicrobial resistance prediction.

2. Results
2.1. Database

Between September 2022 and July 2023, a total of 2229 MALDI-TOF mass spectra of
various bacterial and fungal species were collected. Among the species identified, the most
representative group was that of Gram-positive cocci, with a total of more than 1045 sam-
ples. Within this group, Staphylococcus aureus stood out with 377 samples, followed by
Staphylococcus epidermidis with 225 samples and Enterococcus faecalis with 192 samples. The
second predominant group was Gram-negative bacilli, where Escherichia coli (256 samples),
Pseudomonas aeruginosa (222), and Klebsiella pneumoniae (187) were identified. Figure 2 gives
an overview of the set of bacteria isolated in the Regional Hospital of Talca, as well as a
description of the prevalence of resistant strains in the main species of interest.

2.2. Classification Models

Table 1 shows the results obtained by the different algorithms implemented in this
study, reporting the mean and standard deviation from the 10-fold cross-validation.

In detail, for S. aureus resistant to oxacillin, the CatBoost algorithm showed the best
performance metrics compared to the RF, LR, SVM, and transfer learning models. CatBoost
achieved an AUROC of 0.86, an AUPRC of 0.73, a balanced accuracy of 0.77, and an F1 score
of 0.61 (Table 1). This establishes it as the most robust model in terms of both discrimination
and accuracy. The RF algorithm ranked second with metrics of AUROC equal to 0.86,
AUPRC of 0.68, balanced accuracy of 0.74, and F1 score of 0.56. Additionally, the SVM
and transfer learning models underperformed, yielding the lowest metrics, with AUROCs
below 0.8 and F1 scores below 0.4 (Table 1).
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Figure 2. Distribution of bacterial species and their antibiotic susceptibility profile. The central pie
chart shows the classification of 2229 clinical isolates into Gram-positive and Gram-negative bacteria.
Escherichia coli (n = 256), Klebsiella pneumoniae (n = 187), and Staphylococcus aureus (n = 377), among
other bacterial species, are the main pathogens studied. The susceptibility and resistance profile for
E. coli and K. pneumoniae to ciprofloxacin and for S. aureus to oxacillin are shown in the graphs in the
sidebar. Of the E. coli samples, 145 were susceptible and 107 were resistant to ciprofloxacin, while,
for K. pneumoniae, 73 samples were susceptible and 114 were resistant to the same antibiotic. For
S. aureus, 298 samples were susceptible and 72 were resistant to oxacillin. Differences in the total
number of isolates and susceptibility testing are due to the fact that some samples were not tested
against the antibiotics mentioned.

Table 1. The 10-fold cross-validation results for the models tested in each of the case studies.

Algorithm AUROC AUPRC B. Accuracy F1 Score

S. aureus
Oxacillin

SVM 0.78 ± 0.08 0.63 ± 0.11 0.64 ± 0.09 0.40 ± 0.21
RF 0.86 ± 0.06 0.68 ± 0.09 0.74 ± 0.07 0.56 ± 0.11
LR 0.81 ± 0.08 0.63 ± 0.09 0.73 ± 0.09 0.54 ± 0.12

CatBoost 0.86 ± 0.06 0.73 ± 0.09 0.77 ± 0.07 0.61 ± 0.12
TL 0.78 ± 0.09 0.56 ± 0.14 0.61 ± 0.09 0.34 ± 0.25

E. coli
Ciprofloxacin

SVM 0.77 ± 0.09 0.74 ± 0.09 0.67 ± 0.09 0.58 ± 0.14
RF 0.70 ± 0.07 0.77 ± 0.06 0.66 ± 0.07 0.63 ± 0.06
LR 0.68 ± 0.11 0.66 ± 0.09 0.64 ± 0.11 0.58 ± 0.12

CatBoost 0.91 ± 0.07 0.91 ± 0.06 0.81 ± 0.08 0.78 ± 0.08
TL 0.70 ± 0.06 0.72 ± 0.14 0.68 ± 0.07 0.58 ± 0.11

K. pneumoniae
Ciprofloxacin

SVM 0.65 ± 0.17 0.76 ± 0.11 0.62 ± 0.13 0.73 ± 0.12
RF 0.69 ± 0.13 0.79 ± 0.09 0.58 ± 0.05 0.78 ± 0.02
LR 0.60 ± 0.11 0.72 ± 0.07 0.57 ± 0.11 0.70 ± 0.08

CatBoost 0.73 ± 0.08 0.83 ± 0.07 0.65 ± 0.07 0.78 ± 0.05
TL 0.58 ± 0.12 0.71 ± 0.07 0.50 ± 0.09 0.76 ± 0.02

Values in bold represent the best performance for each case study.

For the bacterium E. coli resistant to ciprofloxacin, the performance of CatBoost was
superior, achieving excellent values of 0.91 and 0.91 in AUROC and AUPRC, respectively,
as well as a balanced accuracy of 0.81 and an F1 score of 0.78 (Table 1). In contrast, the worst
performance was obtained by Logistic Regression, which reached values of 0.68 in AUROC,
0.66 in AUPRC, and 0.64 in balanced accuracy. The SVM and RF models showed AUROC
performances equal to 0.77 and 0.76, respectively. Furthermore, SVM has the lowest F1
score at 0.58, indicating its reduced ability to balance precision and recall, whereas RF
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achieved an F1 score of 0.63. On the other hand, the TL model showed poor performance,
with an AUROC of 0.70 and an AUPRC of 0.73 (Table 1).

Finally, in the case of K. pneumoniae resistant to ciprofloxacin, the performance of the
models was lower compared to S. aureus and E. coli for AUROC, AUPRC, and balanced
accuracy (Table 1). Nevertheless, the CatBoost model outperformed the others, achieving
an AUROC of 0.73 and an AUPRC of 0.83. This model also showed an F1 score of 0.78,
the highest among all models and species evaluated. Similar to the previous models for S.
aureus and E. coli, the use of transfer learning yielded the poorest performance (Table 1).

Furthermore, in terms of applying the SMOTE technique to this type of data, all models
exhibited poor performance across all evaluated metrics (Table S1 in the Supplementary
Materials). Specifically, for S. aureus and E. coli, the CatBoost model outperformed all
metrics compared to the rest of the algorithms. Moreover, for K. pneumoniae, the best model
corresponded to RF. In particular, for S. aureus resistant to oxacillin, the CatBoost model
achieved AUROC and AUPRC values of 0.80 and 0.65, respectively. In the case of E. coli
resistant to ciprofloxacin, the CatBoost model gave metrics of 0.77 in AUROC and AUPRC.
In regards to K. pneumoniae resistant to ciprofloxacin, the RF model yielded AUROC and
AUPRC values of 0.68 and 0.77, respectively (Table S1 in the Supplementary Materials).

2.3. Analysis of Significant Peaks by Using SHAP Values

In order to evaluate the feature contribution, the model with the best performance
for each bacterium under study was selected. Specifically, the CatBoost models were
used to apply Shapley value analysis for the resistant study in S. aureus–oxacillin, E. coli–
ciprofloxacin, and K. pneumoniae–ciprofloxacin. Figure 3 shows the Shapley values of the
15 features with the highest average contribution for each of the three cases studied. In
the case of S. aureus–oxacillin, the ions of 3890, 5670, and 2450 Da play a crucial role in
the resistance prediction. In addition, concerning the red color, which indicates a high
value of the sample in a certain characteristic, we can see that the presence of ions at 3890,
5670, 2450, 3120, 4640, and 9650 Da have a direct relationship with the prediction of the
positive (resistant) class. Moreover, for E. coli–ciprofloxacin, the ion at 5890 Da showed
a strong association with predicting the resistant class, while the presence of three m/z
peaks at 5230, 3850, and 9225 were correlated with the prediction of the susceptible class
(Figure 3). It is also important to note that, in the case of E. coli, from the 15 m/z peaks
reported, the majority are in the range of 2000–3000 Da, which corresponded to ions of 2025,
2295, 2700, 2830, and 2845 Da, with additional peaks in the 5000–6000 Da range, including
ions at 5095, 5110, 5230, 5800, and 5890 Da. Finally, for K. pneumoniae–ciprofloxacin, we can
see that the absence of the m/z 6590 peak is cataloged as the most-determinant factor in the
prediction of resistant samples, followed by the presence of the m/z peaks 5065, 6550, and
4515 Da. It is also important to note that most of the reported ions were concentrated in
the range of 5000–7000 Da, including 5030, 5065, 5290, 5885, 5915, 5935, 6150, 6550, and
6590 Da (Figure 3).

Furthermore, a search was conducted in the UniProt database to identify the most-
likely proteins associated with the top-five m/z peaks identified as most relevant through
the SHAP analysis for each case studied (Figure 3). Table 2 presents the most probable
protein biomarker assignments for each of these peaks, highlighting potential correlations
with key protein functions and their relationship to antibiotic resistance in the evaluated
microorganisms.
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Figure 3. Plots of SHAP values for the major spectral peaks associated with antimicrobial resis-
tance in Staphylococcus aureus (oxacillin), Escherichia coli (ciprofloxacin), and Klebsiella pneumoniae
(ciprofloxacin). The plots show the contribution of each spectral peak to the model prediction, where
blue dots represent low values of the feature (m/z peak) and red dots represent high values. The SHAP
values (on the horizontal axis) indicate the impact of a particular peak on the model output: a positive
SHAP value indicates that the feature increases the likelihood of resistance, while a negative SHAP
value indicates that the feature favors susceptibility. The scatter of the points along the horizontal axis
reflects the variability in the effect of each peak in different samples. Thus, peaks with a higher spread
and amplitude of SHAP values have a greater influence on the model predictions. This visualization
allows the identification of the most relevant spectral biomarkers for the classification of antimicrobial
resistance in the different bacterial species under study.

Table 2. Set of the most important features and next significant protein biomarkers for the best
performing models.

Bacteria Antibiotic Rank Feature
(Mass Da) Uniprot Annotation Uniprot ID

S. aureus Oxacillin

1 3890 RNA-metabolizing metallo-beta-lactamase A0A4P7P589
2 5670 Uncharacterized protein A0AAN0QQJ4
3 2450 Nothing found Nothing found
4 6550 Membrane protein A0AAE8TIP2
5 3120 Phage head–tail adapter protein A0A6G4JAS6

E. coli Ciprofloxacin

1 5890 Inner membrane protein A0A2X1JG16
2 5230 Uncharacterized protein A0A890DJW7
3 3850 Phosphoenolpyruvate synthase A0A3L9HBW1
4 9225 DNA-binding protein HU-beta P0ACF4
5 8350 Plasmid maintenance protein CcdA A0A074N0X8

K. pneumoniae Ciprofloxacin

1 6590 dTDP-4-dehydrorhamnose 3,5-epimerase A0A9Q4WW37
2 5065 Mobile element protein A0A2U8T1Q0
3 6550 Uncharacterized protein A0A0G2ST16
4 4515 IS110 family transposase A0A6M3YYK3
5 8305 Transcription modulator YdgT A0A0W8AUU2

3. Materials and Methods
3.1. Data Acquisition

Between September 2022 and July 2023, antimicrobial susceptibility testing (AST) was
performed on a number of samples, resulting in the creation of eight different databases.
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The process of sample acquisition, characterization, and antibiotic susceptibility testing is
detailed below.

3.1.1. Sample Acquisition and Characterization

The analyzed samples of Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus,
and other isolates were obtained from the Regional Hospital of Talca. Samples were cultured
on commercial media (Columbia Agar and MacConkey Agar, VALTEK, Santiago, Chile) and
incubated at 37 °C for 24 h. Bacterial colonies were then collected, and species identification
was performed using the VITEK® MS mass spectrometer (Biomerieux, Paris, France).

3.1.2. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was performed using the disk diffusion method
(Kirby and Bauer) on Muller Hinton II plates (VALTEK, Santiago, Chile). Each bacterial
colony was adjusted to a 0.5 McFarland standard and exposed to various antibiotics, includ-
ing ampicillin (10 µg), ampicillin/sulbactam (10/10 µg), ceftazidime (30 µg), ciprofloxacin
(5 µg), clindamycin (2 µg), erythromycin (15 µg), ertapenem (10 µg), gentamicin (10 µg),
imipenem (10 µg), meropenem (10 µg), oxacillin (30 µg, with cefoxitin substituted for
oxacillin), piperacillin/tazobactam (100/10 µg), penicillin (10 units), and vancomycin
(30 µg). The plates were incubated at 37 °C for 24 h. Results were evaluated visually
by measuring the zone of inhibition for each antibiotic according to the guidelines out-
lined in the “Performance Standards for Antimicrobial Susceptibility Testing”, CLSI M100
ED33:2023 [22].

3.1.3. Machine Learning Datasets

In order to prepare the datasets for the implementation of machine learning algo-
rithms, it was first necessary to pre-process the mass spectra obtained from the VITEK®MS
instrument. This instrument applies baseline removal, smoothing, and peak detection,
resulting in a summary spectrum with approximately 200 m/z peaks distributed between
2000 Da and 12,000 Da. The VITEK® MS instrument identifies microorganisms by analyzing
ribosomal proteins within a specific mass range (commonly, 2000 to 20,000 Da). These
masses are selected based on the characterization of ribosomal proteins, which are highly
conserved and specific to each microbial species. To obtain fixed-length vectors, the mass
spectra were discretized by a binning procedure, which consists of grouping the measured
mass values into discrete ranges or “bins”, with the representative value being the average
of the intensities within the bin. Binning has been applied in the range of 2000 to 10,000 Da
with a bin size of 5 Da, which allows for a reasonable distribution of mass peaks without
generating a vector that is too long to process computationally. In addition to spectral
processing, each spectrum must be linked to its corresponding antibiotic resistance labels
obtained from antimicrobial susceptibility testing. This linkage was achieved through a
unique 8-digit numerical code that connects the laboratory report with the spectrum pro-
vided by the VITEK® MS instrument. Figure 2 illustrates the number of samples included in
this study, which consist of Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae.
These species were selected based on their relevance, the availability of samples, and their
inclusion in the critical priority groups identified by the World Health Organization.

3.2. Machine Learning Classification

For the identification of antibiotic resistance, Support Vector Machine (SVM), Random
Forest (RF), and Logistic Regression (LR) algorithms, which are among the most-utilized in
the current literature [23], were considered. Additionally, CatBoost, a gradient-boosting
algorithm known for its performance on tabular data [24], was implemented. In order to op-
timize the accuracy of the machine learning models used to predict antibiotic resistance, the
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Recursive Feature Elimination with Cross-Validation (RFECV) method was implemented.
This approach enabled the automatic selection of the optimal set of relevant features for
each of the evaluated models (SVM, LR, RF, and CatBoost). The RFECV process iteratively
assessed the relevance of features using a base model, eliminating the least informative
ones and validating the model’s performance through 10-fold stratified cross-validation.
During this process, the Area Under the Precision–Recall Curve (AUPRC) was used as the
optimized performance metric due to its focus on the positive class and its relevance in
imbalanced data contexts. Subsequently, to optimize the configuration of these models,
10-fold cross-validation was used in a Bayesian hyperparameter search. During this search,
the Area Under the Precision–Recall Curve (AUPRC) was optimized. This metric was
calculated from precision and recall, focusing on the positive class, making it the ideal
metric for evaluating binary classification models in imbalanced data environments.

In the Bayesian search for SVM, the values of ‘C’ and ‘gamma’ were optimized, consid-
ering a ‘rbf’ kernel. For Random Forest, the values of ‘n_estimators’, ‘min_samples_split’,
and ‘max_features’ were optimized. In the case of Logistic Regression, the ‘penalty’ and ‘C’
parameters were optimized. Finally, for CatBoost, the parameters to be optimized were ‘iter-
ations’, ‘depth’, ‘l2_leaf_reg’, and ‘learning_rate’. The models were implemented in Python
using the scikit-learn library, while the hyperparameter search was performed using the
‘Skopt’ library. The final models underwent decision threshold calibration, as the default
value of 0.5 in the scikit-learn library is suboptimal for imbalanced data environments.

Furthermore, another experiment was conducted to evaluate the effectiveness of
the SMOTE (Synthetic Minority Oversampling Technique) on this type of data. All the
classification models, SVM, RF, LR, CatBoost, and TL, were implemented using SMOTE.
In this way, two separate experiments were performed: one without SMOTE and another
incorporating the technique.

3.2.1. Transfer Learning

To evaluate the performance of transfer learning compared to training from scratch
using only local data, deep learning models reported in our previous study [25] were
used—in detail, one model per bacterium. These models were previously trained on the
massive public database of DRIAMS mass spectra [26]. The specific considerations for this
work are detailed below:

• Selection of pre-trained models: Pre-trained models that addressed the same
cases studied in this research were selected—specifically, for Staphylococcus aureus
(oxacillin resistance), Escherichia coli (ceftriaxone resistance), and Klebsiella pneumoniae
(ciprofloxacin resistance);

• Data alignment and preprocessing: Since the mass spectra used in the pre-trained
models were obtained on a Bruker instrument, which provides a complete spectrum
rather than just identified peaks, an alignment of the peaks reported by the VITEK®MS
instrument was performed. This alignment was performed using the mass range from
the previous study as a reference [25]. Since the VITEK®MS only reports about
200 peaks, the resulting spectrum was completed with zeros to adjust its length and
resolution required by the pre-trained model;

• Transfer learning adjustments: Following the recommendations of the original deep
learning study, both the convolutional and fully connected layers of the model were
retrained using a learning rate of 0.0001. In addition, an “early stopping” technique
was implemented to stop training when the AUPRC metric stopped improving, thus
optimizing the fitting process;
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• Cross-Validation: To ensure a fair comparison with the models trained from scratch,
the same 10-fold cross-validation scheme used in the original machine learning models
was applied, guaranteeing the consistency and robustness of the results obtained.

3.2.2. Metrics

The models were implemented with a 10-fold cross-validation in order to avoid overfit-
ting. Different metrics were calculated to evaluate model performance. Specifically, AUPRC,
AUROC, balanced accuracy, and the F1 score were calculated. The AUPRC was calcu-
lated by integrating the precision-recall curve obtained by plotting precision (TP/(TP+FP))
against recall (TP/(TP+FN)). The AUROC measured the ability of the model to discriminate
between positive and negative classes across all possible thresholds by plotting the true
positive rate (recall) against the false positive rate (1 − specificity). Balanced accuracy was
calculated as the average of sensitivity and specificity, adjusting for class imbalance by
giving equal weight to each class. Finally, the F1 score, the harmonic mean of precision and
recall, was particularly useful when the dataset was imbalanced, as it took into account
both false positives and false negatives.

3.2.3. Analysis of Features Contribution with Shapley Values

SHAP (SHapley Additive exPlanations) analysis was used to interpret the significance
and impact of key features, specifically the (m/z) peaks, in predicting antibiotic resistance
across bacterial species. SHAP is widely used for its versatility in explaining both classical
machine learning models and neural networks. In this study, SHAP values were calculated
for the CatBoost model using the TreeExplainer tool, which is tailored for decision tree-
based algorithms.

4. Discussion
This research investigated the potential of MALDI-TOF mass spectrometry data in

combination with machine learning algorithms to predict antimicrobial resistance in Staphy-
lococcus aureus, Escherichia coli, and Klebsiella pneumoniae bacteria. The majority of preceding
studies that have utilized these techniques were based on spectra obtained with Bruker
equipment, which allows the complete spectrum to be exported for use in machine learning
algorithms [23,25–27]. In contrast, this study examined the efficacy of mass spectra gener-
ated by VITEK® MS in predicting resistance by applying a benchmarking of algorithms,
including SVM, Logistic Regression, Random Forest, and CatBoost. Furthermore, we
explore the application of models previously trained on MALDI-TOF data from Bruker [25]
in order to assess the efficacy of transfer learning of these models to MALDI-TOF data from
the VITEK®MS instrument.

As shown in Table 1, tree-based algorithms, particularly the CatBoost model, provide
an optimal approach for antimicrobial resistance identification. The gradient-boosting
technique employed by the CatBoost model demonstrated particular efficacy in addressing
the complex non-linear relationships inherent in mass spectra, outperforming all other
algorithms across the evaluated metrics. These findings are consistent with those of
previous studies that have also highlighted the superiority of gradient boosting models in
heterogeneous data sets such as MALDI-TOF spectra [28,29].

Regarding transfer learning results, the performance proved to be unsatisfactory,
with metrics underperforming compared to other models (Table 1). This may be due to
differences in the resolution and characteristics of the spectra generated by the different
instruments (Bruker and VITEK®MS), suggesting that the pre-trained models require more
specific adaptations to the local context to be effective. This finding emphasizes data stan-
dardization in future research aiming to apply transfer learning across different instruments.
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In this way, it is essential to explore new methodologies that enable transfer learning to
integrate data from different mass spectrometry instruments to obtain adaptable models
for diverse clinical settings and improve diagnostic accuracy for antimicrobial resistance.

In addition, the SMOTE technique did not improve the prediction of antibiotic resis-
tance among S. aureus, E. coli, and K. pneumoniae (Table S1 in Supplementary Materials).
Also, using SMOTE reduced performance by up to 10% for the AUROC and AUPRC met-
rics. For instance, in the case of E. coli, the AUROC decreased from 0.91 without SMOTE
(Table 1) to 0.77 with SMOTE (Table S1 in Supplementary Materials).

In the analysis of potential biomarkers using SHAP values in the CatBoost model,
several relevant peaks were identified as potential biomarkers for each bacterium under
study. Specifically, for S. aureus, the peak at 3890 m/z was found to be associated with the
SCCmec type II gene in the Jung-Min study [30]; the peak at 6550 m/z was associated with
clone ST239, one of the most prevalent in hospital-acquired infections [31]; and the peak at
4810 m/z was related to clone ST45, a globally prevalent lineage of methicillin-resistant S.
aureus (MRSA), which often causes severe invasive infections such as bacteremia [32].

Regarding the results from the UniProt search (Table 2), the RNA-metabolizing metallo-
beta-lactamase protein (4890 m/z), commonly associated with ribonucleic acid metabolism,
may play a role in resistance mechanisms, either through indirect interactions or as part
of stress response pathways [33]. Additionally, the identification of the phage head–tail
adapter protein (3120 m/z) suggests a possible involvement of prophages or horizontal
gene transfer in modulating resistance phenotypes in S. aureus [34]. Furthermore, for E. coli,
peaks at 8350 and 9700 m/z previously documented by Nakamura and colleagues [35] are
associated with the ST131 lineage, one of the most predominant among multidrug-resistant
E. coli isolates. Finally, for K. pneumoniae, no specific literature references were found
for the reported peaks. However, according to UniProt, the dTDP-4-dehydrorhamnose
3,5-epimerase (6590 m/z), a protein involved in lipopolysaccharide biosynthesis, exhibited
a strong association with antibiotic resistance [36]. Additionally, the identification of
a transcriptional modulator YdgT (8305 m/z) further emphasizes the potential role of
regulatory mechanisms in facilitating adaptive responses to antibiotic exposure [37].

These findings are especially significant from a clinical perspective given the growing
prevalence of antibiotic-resistant pathogens in Chile and worldwide. The ability to predict
antibiotic resistance quickly and accurately is crucial for optimizing treatments and improv-
ing patient outcomes. Integrating these tools into clinical practice could dramatically reduce
the time needed to identify resistance, enabling more timely and appropriate therapies.
Furthermore, infections caused by resistant microorganisms are closely associated with
increased healthcare costs, higher mortality and morbidity rates, and prolonged hospital
stays. These underscore the importance of effective antibiotic stewardship programs and
infection control measures [38].

According to our findings, achieving timely and early treatment and reducing treat-
ment duration for resistant pathogens represent significant leaps forward for public health.
These are especially crucial for hospitalized patients with not only clinical risk factors but
also social and economic factors, which may facilitate the transmission of antimicrobial
resistance, likely due to limited access to timely and quality healthcare [39].

Finally, our results suggest that mass spectrum-based classification models have the
potential to become a powerful tool in the fight against antimicrobial resistance. However,
one of the main limitations identified in this study is the urgent need to standardize
spectrum acquisition and preprocessing procedures. Such standardization is essential to
enhance the generalization capabilities of the models, enabling their application across
diverse clinical and geographical contexts, even when trained with data from different
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laboratories. In this way, our methodology presents promising avenues to combat the
ongoing antimicrobial resistance crisis, in line with a One Health approach [40].

5. Conclusions
In conclusion, this study highlights the potential of integrating MALDI-TOF MS data

with machine learning to predict antibiotic resistance in S. aureus, E. coli, and K. pneumoniae.
Among the tested algorithms, the CatBoost model outperformed SVM, RF, RL, and transfer
learning, achieving AUPRC and AUROC values of 0.73 or higher for all bacteria under
study. While tree-based models demonstrated robust performance, transfer learning faced
challenges due to instrument variability. Identified biomarkers provide valuable insights
for future research, but standardizing data acquisition and optimizing transfer learning is
essential to enhance generalizability and clinical applicability. These findings highlight the
critical role of rapid and accurate resistance prediction in addressing the global challenge
of antibiotic resistance.
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